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Truss Elements with Geometric 
Nonlinearity 

Truss elements are important when considering geometrical nonlinearity, because they 
encompass the “leaning column” effect. Also, as shown in the excellent book by Crisfield, 
which appears in the reference list for this document, considering the truss element is a 
pedagogical introduction to geometric nonlinearity. Several strain measures are explained 
in the Crisfield book, but the Green-Lagrange strain is ultimately adopted, as in other 
documents on this website whenever geometric nonlinearity is included. That implies 
moderate but not large displacements, as well as small but not infinitesimally small strains. 
In addition to the choice of a strain measure, it is necessary to select a reference frame for 
the development of internal force and tangent stiffness for the element. Also explained by 
Crisfield, the options are Total Lagrangian, Updated Lagrangian, and the Corotational 
approach. All are addressed in the Crisfield book, while only the Updated Lagrangian 
approach is covered in this document and the accompanying implementation in Element 3 
in the Python code G2 posted on this website. With the Updated Lagrangian approach, the 
starting point for the derivations is the truss element in its Local configuration shown in 
Figure 1. As indicated in the figure, that coordinate system is the orientation of the element 
in its last converged equilibrium position. That is the Updated Lagrangian approach.  

 
Figure 1: Axes, displacements, and degrees of freedom for 2D truss element. 

Kinematic Compatibility 
As shown in a separate document on Green-Lagrange strain, posted on this website, there 
are several equivalent ways to express that strain measure. The version adopted in the 
implementation of Element 3 in G2 is 
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where L0 is the original element length and L is the current element length. Because L is 
calculated from the current displaced nodal coordinates, Eq. (1) captures the elongation 
and shortening that comes from rotation of the element. That is the essence of the geometric 
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nonlinearity considered here. For the sake of subsequent developments, it is here 
emphasized that Eq. (1) is equivalent to 
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Material Law 
In this document, the focus is on geometric nonlinearity. For that reason, the linear elastic 
material law is adopted. This implies small strains but still the possibility of moderate 
displacements:  
  (3) 

Shape Functions 
The finite element method is, with few exceptions, displacement-based. That means that 
displacement interpolation, i.e., shape functions for the displaced shape of the element, is 
central. To include geometric nonlinearity for a 2D truss element it is necessary to consider 
all four degrees of freedom shown in Figure 1. This is an extended version of the “local” 
degrees of freedom of ordinary linear structural analysis. In the notes on this website, the 
displacement interpolation is generally written as 

  (4) 

where =is the vector of displacement fields, N=matrix with shape functions, and 
u=degrees of freedom.  
 

In the present case, Eq. (4) is spelled out as 

  (5) 

where  

  (6) 

Principle of Virtual Displacements 
This principle expresses equilibrium in an average sense: 
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where p is a two-dimensional vector containing distributed loads in the x- and z-directions 
and  is defined in Eq. (5). Substitution of material law and integrating over the cross-
section area yields 

   (8) 

The virtual strain, de, requires special attention in face of geometric nonlinearity. In the 
linear case, matters are simple: de=du'. That changes in light of the strain in Eq. (2). To 
address this issue, it is helpful to think of d as a “variation” instead of “virtual.” Calculus 
of variation, i.e., executing the variation, yields 

  (9) 

With de addressed, at least for now, attention turns to e, still in light of Green’s strain in 
Eq. (2). The first objective is to express the derivatives du/dx and dw/dx in that strain 
expression in terms of shape functions. To that end, Eq. (5) is first split up, for convenience: 
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That means the sought derivatives are 

  (12) 
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where the row vectors B and C are defined. That means the strain in Eq. (2) is written 
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That notation also means that the virtual strain in Eq. (9) reads 

  (15) 

Substitution of Eqs. (4), (14), and (15) into the internal work expression in Eq. (8) yields 

  (16) 

Rearranging like we always do in the derivation of finite elements, i.e., changing the order 
of multiplication of the scalars within the parenthesis, taking the transpose of a scalar, and 
extracting du, assuming arbitrary virtual displacements yields 
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  (17) 

EA multiplied by the second parenthesis is the axial force in the element because 

  (18) 

That means Eq. (17) can be written  

 
 

(19) 

which, following the notation established on this website, symbolically reads 𝐅1 = 𝐅. That 
is a useful expression for nonlinear structural analysis, where the axial force, N, is 
determined from the trial displacements so that the internal resisting forces, 𝐅1, can be 
calculated. Substitution of the expressions for B and C from Eqs. (12) and (13) gives 
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where q is introduced to denote the counter-clockwise chord rotation of the element. Eq. 
(20) represents equilibrium in the displaced shape marked with the red colour in Figure 1, 
relative to the previously committed shape marked with blue. Furthermore, Eq. (20) defines 
the transformation from the Basic to the Local configuration; Eq. (20)  shows that the force 
along the four Local degrees of freedom is equal to a vector times the Basic axial force, N. 
That means the vector in the last equality in Eq. (20) is the transpose of Tbl. That is reflected 
in the implementation as Element 3 in G2, posted on this website. Notice that q in Tbl is 
the rotation from the blue reference configuration in Figure 1 to the current red 
configuration. It is useful for the top-level solution algorithm to also have the tangent 
stiffness matrix: 

  (21) 

where the product rule of differentiation is employed, and where, in light of Eq. (18): 

  (22) 

EA ⋅ BT +CTCu( ) Bu+ 12 ⋅u
TCTCu⎛

⎝⎜
⎞
⎠⎟ dx

0

L

∫ = NTpdx
0

L

∫

N = A ⋅σ = EA ⋅ε = EA ⋅ Bu+ 1
2
⋅uTCTCu⎛

⎝⎜
⎞
⎠⎟

 BT ⋅N dx
0

L

∫

Linear term! "# $#

+ CTCu ⋅N dx
0

L

∫

Geometric nonlinearity! "## $##

Pint
! "#### $####

= NTpdx
0

L

∫
Pext

!"# $#

KT =
∂Pint
∂u

= BT ⋅ ∂N
∂u

dx
0

L

∫ + CTCu ⋅ ∂N
∂u

dx
0

L

∫ + CTC ⋅I ⋅N dx
0

L

∫

∂N
∂u

= EA ⋅ B+ uTCTC( )

𝐊& =
𝜕𝐅1
𝜕𝐮 



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Truss Elements with Geometric Nonlinearity Updated April 8, 2024 Page 5 

That means the tangent stiffness is 

  (23) 

where the elastic and geometric stiffness matrices are identified. As explained on Page 68 
of the second edition of the Crisfield book, the tangent stiffness itself is not a function of 
u, implying that only Ko and KG are kept in the implementation of this element as Element 
3 in the G2 code posted on this website. Also, in the implementation in Element 3, the 
elastic portion of the stiffness matrix is simply calculated as Ko=TblTKbTbl, with defined in 
the discussion after Eq. (20). Notice that Ko and KG are stiffness matrices in the Local 
element configuration, marked with blue in Figure 1. In order to obtain the global stiffness 
matrix that is returned from the element, the transformation 

 𝐊' = 𝐓(')(𝐊* + 𝐊+)𝐓(' (24) 

is conducted with the standard local-to-global transformation 
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where the direction cosines are cx=Dx/L=cos(q) and cy=Dz/L=sin(q)  with Dx and Dz being 
the difference in x- and z-coordinates of the element ends, including both the original 
undeformed configuration and also the displacements up to the previously committed state. 
In other words, q is here the angle between the x-axis and the blue line in Figure 1. The 
remaining rotation from the blue line to the red line was addressed in the Tbl transformation 
described earlier.  
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