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System Reliability 
System reliability analysis addresses problems where the failure event is defined by the 
joint state of more than one limit-state function. As a conceptual example, consider a 
structural element with two failure modes, each associated with one limit-state function. 
The individual limit-state functions are called “component reliability problems” and are 
addressed by, for instance, FORM analysis. However, if failure occurs only if both limit-
state functions have a negative realization, then it is a “system reliability problem.” 
Specifically, in this conceptual example, it is a parallel system problem, as described 
below. 

Formulation of System Reliability Problems 
For reference, the component reliability problem reads 

  (1) 

In contrast, a series system reliability problem is characterized by failure occurring if any 
of several limit-state functions have negative realizations: 

  (2) 

where K is the number of limit-state functions. Another special case of a system 
reliability problem is the parallel system, in which failure occurs only when all the limit-
state functions have negative realizations: 

  (3) 

Neither the series system nor the parallel system describes the general system reliability 
problem, but both concepts are involved. The general system reliability problem is 
usually formulated as a series system of parallel systems: 

  (4) 

where M is the number of sub-parallel systems and cm is the “cut set” that contains the 
indices of the limit-state functions that form sub-parallel system m. The logical operator 

 in Eq. (4) means that only limit-state functions within cut set m is included. The 
cut set formulation in Eq. (4) can be replaced by the equally general “link set” 
formulation, in which the problem is defined as a parallel system of sub series systems. 
However, this is uncommon and less intuitive in the reliability analyses addressed here.  

pf = P g(x) ≤ 0( )

pf = P gk (x) ≤ 0( )
k=1

K

⎛⎝⎜
⎞
⎠⎟

pf = P gk (x) ≤ 0( )
k=1

K

∩⎛⎝⎜
⎞
⎠⎟

pf = P gj (x) ≤ 0( )
j∈cm


m=1

M


⎛

⎝⎜
⎞

⎠⎟

j ∈cm



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

System Reliability Updated April 11, 2024 Page 2 

Sampling  
In this document it will soon become apparent that the calculation of the exact failure 
probability of a system is hard, at best. Although sampling analysis is often 
computationally expensive it is appealingly straightforward to implement for system 
reliability problems. For each sample is it checked whether the any of the limit-states are 
violated and if this caused system failure. Depending on the result the indicator function 
explained in the Sampling notes on this website is set to zero or unity, and another 
sample is generated. Hence, sampling is always a straightforward alternative to obtain an 
estimate of the system failure probability, albeit often a computationally costly one. 

FORM Analysis 
If FORM analysis is conducted for each individual component reliability problem then 
the system failure probability can be obtained for certain series and parallel systems. 
General system reliability problems are addressed in later sections. 

Parallel Systems 
The parallel system problem in Eq. (3) is equivalently written in the standard normal 
space as 

  (5) 

where G=limit-state function and y=vector of standard normal random variables. 
Linearizing each limit-state function by FORM yields 

  (6) 

where bk and ak are the reliability index and alpha-vector for each limit-state function. 
For each limit-state function, the random variable 

  (7) 

is now defined. According to the joint uncorrelated standard normal distribution for y the 
variables zk have zero mean. Also, because the alpha-vectors are normalized the zk 
variables have unit variances. Conversely, the covariance between zi and zj is 

  (8) 

i.e., the dot product of the two alpha-vectors. This covariance is equal to the correlation 
because the zk variables have unit standard deviation. Substitution of Eq. (7) into Eq. (6) 
yields the system failure probability 

  (9) 

Because of the symmetry of the normal distribution that governs the variables zk, Eq. (9) 
can be rewritten in the form 
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  (10) 

which expresses the k-dimensional correlated standard normal CDF; hence, the system 
failure probability can be written (Hohenbichler and Rackwitz 1983; Der Kiureghian 
2005) 

  (11) 

where b is the vector of reliability indices for all the limit-state functions and R is the 
correlation matrix for the random variables zk. The correlation matrix contains the 
covariances in Eq. (8) because the standard deviations are equal to one. Evaluation of the 
joint normal CDF is addressed shortly.  

Series Systems 
The series system problem in Eq. (2) is equivalently written in the standard normal space 
as 

  (12) 

and repeating the FORM linearization from above yields 

  (13) 

again defining the variables 

  (14) 

which have zero mean and unit variances, with the covariance, here equal to the 
correlation, between zi and zj written 

  (15) 

Substitution of Eq. (14) into Eq. (13) yields the system failure probability 

  (16) 

The inclusion-exclusion rule is unappealing for evaluating that probability; to arrive at an 
expression involving the intersection operator rather than the union operator the 
complementary probability rule is first invoked: 

  (17) 

followed by the application of one of de Morgan’s rules: 
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  (18) 

Because zk are correlated standard normal random variables the k-dimensional joint 
standard normal CDF is identified; hence, the probability reads  (Hohenbichler and 
Rackwitz 1983; Der Kiureghian 2005) 

  (19) 

where again b is the vector of reliability indices for all the limit-state functions and R is 
the correlation matrix for the random variables zk.  

Evaluating the Multivariate Standard Normal CDF with Correlation 
Eqs. (11) and (19) look good on paper but it is unfortunately difficult to evaluate the k-
dimensional joint standard normal CDF (Ambartzumian et al. 1998). However, for k=2 
matters are somewhat simpler and the sought expression is 

  (20) 

where the last term is the integral of the bivariate standard normal PDF with correlation, 
with correlation between the two limit-states explained earlier as  

  (21) 

It is noted that this correlation coefficient must exceed, say, 0.5 before the intersection 
probability, i.e., the integral in Eq. (20) becomes significant. Given Eq. (20) it is possible, 
in general, to evaluate parallel and series system problems with up to two components. 
Larger parallel and series systems can be analyzed if the limit-states are uncorrelated, but 
this is still a rather disappointing situation. However, Eq. (20) does open up an 
approximate analysis venue; namely, the use of bounds, which is addressed next. 

System Reliability Bounds 
The difficulties associated with evaluating the system failure probability even for series 
and parallel systems have led to the exploration of probability bounds. That approach is 
here explained for series systems, which also addresses parallel systems in the sense that 
the latter can be transformed into series systems using de Morgan’s rules. In the 
following, component m, i.e., each failure mode m of the series system is denoted cm. 
This failure mode can either be a single limit-state function or a cut set. If cm represents a 
cut set then remember, as explained later in this document, that it can be challenging to 
define it and calculate P(cm) and the bi-modal probabilities P(cicj), which will appear 
shortly. The bounds on the series system failure probability are derived by first 
considering the inclusion-exclusion rule 
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  (22) 

where cm denotes the event that limit-state number m is violated, or more generally that 
all limit-states in cut set number m is in the failure state. Introducing the shorthand 
notation pm=P(cm) the so-called unimodal bounds are formulated by retaining only the 
first term in Eq. (22): 

  (23) 

Uni-modal bounds make for a rough approximation. A better option, made available 
through Eq. (20), are bi-modal bounds, which represent an extension where also the two-
component intersection probabilities are kept from Eq. (22). Using the shorthand notation 
pij=P(cicj) the bounds read (Ditlevsen 1979) 

  (24) 

where the bi-modal probabilities pij are evaluated according to Eq. (20). To make these 
bi-modal bounds more accessible they are here illustrated for up to four components: 

  (25) 

The bounds will vary somewhat depending on the ordering of the limit-state functions; 
hence, all combinations should be checked to ensure that the bounds are not falsely 
narrow.  

Identification of Cut Sets for General Systems 
Unless the problem at hand is a “pure” series or parallel system, it is an important task to 
identify the cut sets of the problem. To repeat, a cut set is a collection of limit-states 
whose joint failure causes failure of the system. Three concepts are helpful when 
identifying the cut sets of a general system reliability problem: 

• Reliability block diagrams 
• Minimum cut sets 
• Disjoint cut sets 

These concepts are described in the following using a simple example. 

Reliability Block Diagrams 
A reliability block diagram (RBD), such as the illustration in Figure 1, can informally be 
regarded as a road map between two cities. In this view, the individual limit-state 
functions, numbered 1 through 4 in the figure, are informally seen as bridges that can in 
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the safe or failed state. If certain bridges are closed, i.e., if certain limit-states are in the 
failure state then it is impossible to get from one city to the other, i.e., from one of the 
solid black circles to the other. For example, in Figure 1 the system fails if limit-state 3 
and 4 fail. This means that components 3 and 4 constitutes a cut set. The roadway 
interpretation of an RBD helps when identifying cut sets; the failure of any set of 
components that would close the connection between the two cities is a cut set.  

 
Figure 1: Reliability block diagram. 

Minimum Cut Sets 
The first task in solving a general system reliability problem is to identify all the cut sets. 
The system visualized in the RBD in Figure 1 has two cut sets: 

 
𝑐! = {𝐸", 𝐸#} 

𝑐$ = {𝐸!, 𝐸$, 𝐸#} 
(26) 

Using the informal parlance of the previous subsection, this is because the failure of 
“bridge” 3 and 4, or the failure of bridge 1, 2, and 4 will close the connection between the 
two cities marked by solid black dots. In short, identify cut sets by identifying all 
combinations of component failures that would cause system failure. Usually these are 
immediately “minimum” cut sets; namely, cut sets that contain the minimum number of 
components. By definition, a minimum cut set is formulated so that, if any component is 
removed from the cut set, then it ceases to be a cut set.  

Disjoint Cut Sets 
To understand the meaning and application of “disjoint cut sets” it is useful to see how 
the system failure probability is calculated with minimum cut sets, i.e., using the 
inclusion-exclusion rule: 

  (27) 

While Eq. (27) may seem conceptually straightforward, it is actually tricky to ensure that 
the correct events are subtracted and added in the intersection probabilities. This problem 
motivates the formulation of disjoint cut sets, i.e., cut sets that are mutually exclusive. 
This means that the intersection probabilities in Eq. (27) are zero, and the failure 
probability for the system is 
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  (28) 

Although Eq. (28) simplified greatly from Eq. (27) an important challenge remains; 
namely, to define proper disjoint cut sets. For the simple example in Figure 1 it is 
tempting to simply revise Eq. (26) to 

 
𝑐! = {𝐸'!, 𝐸", 𝐸#} 

𝑐$ = {𝐸!, 𝐸$, 𝐸#} 
(29) 

because these cannot occur simultaneously. However, that simplistic approach is fraught 
with peril. Only a more careful inspection of a Venn diagram, or even better, an 
enumeration of all possible mutually exclusive and collectively exhaustive system states, 
can tell whether we are including the desired events in the definition of system failure. In 
order to explain that, and also in preparation for the next section, consider the Venn 
diagram in Figure 2. It shows the case of two components. Each component can either be 
in a safe or failed state. For such two-state components, the number of possible disjoint 
system states is 2N, where N is the number of components. Figure 2 identifies by symbols 
ei the four disjoint system states for the case of two components.  

 
Figure 2: Venn diagram showing distinct system states for two components (2N=22=4). 

Figure 3 identifies all possible disjoint system states for the case of three two-state 
components. With only three components, it is still a straightforward task to enumerate 
all disjoint system states. For example, we easily identify 𝑒% = {𝐸!, 𝐸'$, 𝐸"}, 𝑒& =
{𝐸'!, 𝐸'$, 𝐸'"}, and so forth.  

 
Figure 3: Venn diagram showing distinct system states for three components (2N=23=8). 
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Figure 4 shows the Venn diagram for four components. Already with this low number of 
components, it is more challenging to identify all disjoint system states, which there are 
now sixteen of. The system states corresponding to the two cut sets from Eq. (26) are 
marked with boldface. That reveals that the attempt to formulate disjoint cut sets in Eq. 
Eq. (29) misses a system state that causes failure. Specifically, the first cut set in Eq. (29) 
encompasses e10 and e13 in Figure 4 and the second cut set encompasses e12 and e15. That 
leaves e14 unaccounted for, implying a failed attempt in Eq. (29) to formulate proper 
disjoint cut set. A more systematic approach is explained next.  

 
Figure 4: Venn diagram showing distinct system states for four components (2N=24=16). 

Matrix Formulation 
During the first years of this millennium, I studied together with Junho Song, Paolo 
Gardoni, and Johannes Royset in an office space created by our supervisor Professor Der 
Kiureghian. My study mates are geniuses in their own right, now holding prestigious 
professor positions at top universities. However, Professor Song possesses a unique 
combination of a kind and calm personality, exceptional academic creativity, and a 
mathematical rigour only matched by our supervisor. It is Junho Song who is the person 
behind the ideas outlined in this section. For additional details and clarity, read Professor 
Song’s papers and the system reliability chapter in the 2022 textbook by Professor Der 
Kiureghian. As an introduction, consider a selection vector, a, with the same dimension 
as the number of mutually exclusive and collectively exhaustive events, i.e., 2N. The 
purpose of a is to pick from the mutually exclusive and collectively exhaustive events the 
ones that defines system failure. For the example addressed earlier, the boldface events in 
Figure 4 suggests that the selection vector in that case is 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
𝐚! = 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0

 (30) 

For a moment, suppose the probability of occurrence of all the mutually exclusive and 
collectively exhaustive events are available. Denote them by pi=P(ei) and collect them in 
the vector p. The failure probability for the system is then the dot product 
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 𝑝' = 𝐚(𝐩 (31) 

Because several values in p are typically unavilable, Professor Song proposed the use of 
Eq. (31) as the objective function in a linear programming formulation. That facilitates 
the formulation of equality and inequality constraints for the probabilities in p and the 
calculation of system probability bounds by linear programming. However, let us return 
to the formulation of a. Without a Venn diagram, such as that in Figure 4, it can be 
awkward and error-prone to establish that selection vector. Professor Song came up with 
clever way to establish a, which acknowledges that a cut set formulation like Eq. (26) is 
the starting point. The cut sets spells out what is system failure, in terms of the 
components, Ej. Denoting by aj the 2N-dimensional selection vector for each component, 
the selection vectors for the previously considered example are 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
𝐚"! = 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0
𝐚#! = 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0
𝐚$! = 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0
𝐚%! = 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0

 (32) 

In order to use those vectors in the cut set formulation of systems, recall that each cut set 
is a parallel system, and that the cut sets then form a series system. From Eq. (26), the 
first cut set consists of components E3 and E4. The element-wise Hadamard 
multiplication of a3 and a4 gives the selection vector for that cut set: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
𝐚$! = 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0
𝐚%! = 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0

𝐚$! ∗ 𝐚%! = 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0

 (33) 

We observe that the result is a selection vector that picks e10, e13, e14, and e15 from Figure 
4. From Eq. (26), the second cut set consists of components E1, E2, and E4. The element-
wise Hadamard multiplication of a1 , a2, and a4 gives the selection vector for that cut set: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
𝐚"! = 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0
𝐚#! = 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0
𝐚%! = 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0

𝐚"! ∗ 𝐚#! ∗ 𝐚%! = 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

 (34) 

We observe that the result is a selection vector that picks e12 and e15 from Figure 4. At 
this stage, it is comforting to see that the results in Eqs. (33) and (34) include all the 
events marked with boldface in Figure 4. However, we must now merge those results to 
obtain the final selection vector. That is done by recognizing that the cut sets formulated 
in Eq. (26) and reformulated in Eqs. (33) and (34) form a series system. Instead of the 
multiplication above, it would not make sense to engage in summation of the vectors 
obtained in Eqs. (33) and (34). That would give values greater than unity in the selection 
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vector. Rather, use the following sketch of the probability of the complement in 
conjunction with one of de Morgan’s rules: 

𝑃(𝑐! ∪ 𝑐$) = 1 − 𝑃(𝑐! ∪ 𝑐$''''''''') = 1 − 𝑃(𝑐!2 ∩ 𝑐$2 ) = 1 − 𝑃(𝑐!2) ⋅ 𝑃(𝑐$2 )
= 1 − 51 − 𝑃(𝑐!)6 ⋅ 51 − 𝑃(𝑐!)6 

(35) 

to underpin the following merger of the selection vectors that came out of Eqs. (33) and 
(34) in order to obtain the final selection vector:  

 𝐚 = 𝟏 − (𝟏 − 𝐚3 ∗ 𝐚4) ∗ (𝟏 − 𝐚1 ∗ 𝐚2 ∗ 𝐚4) (36) 

where 1 is a 2N-dimensional vecot with ones and the symbol * still means Hadamard 
multiplication. Evaluating Eq. (36) for the considered example gives a vector a that is 
identical to Eq. (30), as expected.  
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