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A short course on

Nonlinear Finite Element Analysis

This video: 
Material Nonlinearity



Steel



Concrete



Material Testers

• Several “testers” posted online

• For both G2 and OpenSees

• Option 1: Input strain to “state” and get stress

• Option 2: Test implementation too:



Uniaxial Material Models

NIST GCR 10-917-5, NEHRP Seismic Design Technical Brief No. 4, Nonlinear Structural Analysis For Seismic Design, 
A Guide for Practicing Engineers, by Gregory G. Deierlein, Andrei M. Reinhorn, and Michael R. Willford. 

Used in fibres in distributed plasticity elements
(displacement-based and force-based)



Elasto-Plastic

Strain, e

Stress, s

Yield stress, fy or sy Yielding without strengthening, 
i.e., without ”strain hardening”



Plastic Capacity Analysis

• Lower-bound theorem (equilibrium)

• Upper-bound theorem (compatibility)
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Upper-bound
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Pros and Cons

• Quick estimates of “ultimate capacity” by hand calculations

• Can also be done computationally

• Concept employed in “capacity design” procedures

• Large deformations may develop before capacity is reached

• The upper-bound theorem is unconservative; must try different mechanisms 



Python
See code posted at terje.civil.ubc.ca



Hysteresis

• Input variables

• State variables

• History variables

• Incremental strain

• Commit!



Bilinear Model



Kinematic Hardening
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Yielding Criteria

fy

One in-plane 
principal stress

One in-plane 
principal stress

fy
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In this quadrant the in-plane 
principal stresses are the 
minimum and maximum stresses

In this quadrant the out-
of-plane zero stress is 
the maximum stress

In this quadrant the in-plane 
principal stresses are the 
minimum and maximum stresses

In this quadrant the out-
of-plane zero stress is 
the minimum stress

Tresca

von Mises

• Tresca: “It is shear stress”

• Mohr: tmax=½(smax–smin)

• Tresca: Yielding if (smax–smin) > fy

• von Mises: 

• Deviatoric stress tensor

• Eigenvalue problem for principal stresses

• Use J2: 

• Yielding if: 

• Result:
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J2 Plasticity
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s = stress (tension positive)
e = strain (tension positive)
fy = yield stress
E = Young’s modulus
a = second-slope stiffness factor
skin = back-stress, shift-stress

Kinematic hardening

(Bauschinger effect)
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Plastic flowPlastic flow• Yield function: 

• Kinematic hardening: 

Movement of elastic region

• Isotropic hardening: 
Expansion of elastic region

f = σ − fy

f = σ −σ kin − fy + f iso( )



Bouc-Wen
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Algorithmic Tangent Modulus

• Continuum tangent: Differentiate equations

• Algorithmic tangent: Differentiate algorithm

• Newton-Raphson convergence requires the algorithmic tangent



Backbone Curve



Degradation

… in stiffness

… in strength

… between cycles

… within a cycle



Pinching
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More lectures:

Terje’s Toobox:

terje.civil.ubc.ca


