A short course on

Nonlinear Finite Element Analysis

This video: Material Nonlinearity

Terje's Toolbox is freely available at <u>terje.civil.ubc.ca</u> It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng., Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Steel

Concrete

Material Testers

Uniaxial Material Models

NIST GCR 10-917-5, NEHRP Seismic Design Technical Brief No. 4, Nonlinear Structural Analysis For Seismic Design, A Guide for Practicing Engineers, by Gregory G. Deierlein, Andrei M. Reinhorn, and Michael R. Willford.

Elasto-Plastic

Plastic Capacity Analysis

Lower-bound

$$M_u = \sigma_y \cdot \left(b \cdot \frac{h}{2}\right) \cdot \frac{h}{2}$$

Upper-bound

Plates

Pros and Cons

- Quick estimates of "ultimate capacity" by hand calculations
- Can also be done computationally
- Concept employed in "capacity design" procedures
- Large deformations may develop before capacity is reached
- The upper-bound theorem is unconservative; must try different mechanisms

See code posted at terje.civil.ubc.ca

Hysteresis

- Input variables
- State variables
- History variables
- Incremental strain
- Commit!

<pre># increment</pre>	= current load step, i.e., increment
# dlamb	= load increment
# theLambda	= load factor for current load step
# iter	= counter of equilibrium iterations
# Ua	= matrix of displacements for "all" DOFs
#	First column of ua = total displacements
#	Second column of ua = displacements since last committed state
#	Third column of ua = solution to system of equations
# ualold	= previously committed displacements (used only if solution does not converge)

10		
11	lass bilinearMaterial():	
12		
13	#	
14	# Constructor	
15	#	
16	<pre>definit(self, mat):</pre>	
17		
18	# Material and geometry properties	
19	<pre>self.E = float(mat[1]) # Modulus of elasticity</pre>	
20	<pre>self.fy = float(mat[2]) # Yield stress</pre>	
21	<pre>self.alpha = float(mat[3]) # Second slope stiffness is alpha*E</pre>	
22		
23	# Trial instantiation variables	
24	self.trialStrain = 0.0	
25	<pre>self.trialStress = 0.0</pre>	
26	<pre>self.trialBackStress = 0.0</pre>	
27	<pre>self.trialYielding = False</pre>	
28		
29	# Committed instantiation variables	
30	<pre>self.committedStrain = 0.0</pre>	
31	<pre>self.committedStress = 0.0</pre>	
32	<pre>self.committedBackStress = 0.0</pre>	
33	<pre>self.committedYielding = False</pre>	
34		

Bilinear Model

	<pre>def state(self, eps):</pre>
	# This is an incremental material
	deps = eps[1]
	# Check for unloading
	unloading = False
	if (self.committedYielding == True and (self.committedStress - self.committedBackStress) * deps < 0):
	unloading = True
	# Check if the last state was elastic or if the strain increment implies unloading from yielding
	if self.committedYielding is False or unloading:
	# Strain increment that would cause yielding
	<pre>depsToYield = (np.sign(deps) * self.fy + self.committedBackStress - self.committedStress) / self.E</pre>
	# Keep elastic state handy, in case that becomes the conclusion
	<pre>self.trialStress = self.committedStress + self.E * deps</pre>
	Et = self.E
	<pre>self.trialYielding = False</pre>
	# Check if the strain increment causes yielding from an elastic state (initiation of unloading is elastic)
	<pre>if abs(deps) > abs(depsToYield) and not unloading:</pre>
	<pre>self.trialStress = self.trialStress + (self.alpha * self.E - self.E) * (deps - depsToYield)</pre>
	self.trialBackStress = self.committedBackStress + self.alpha * self.E * (deps - depsToYield)
	<pre>Et = self.alpha * self.E</pre>
	<pre>self.trialYielding = True</pre>
	else:
	# Continue plastic loading
	<pre>self.trialStress = self.committedStress + self.alpha * self.E * deps</pre>
	<pre>self.trialBackStress = self.committedBackStress + self.alpha * self.E * deps</pre>
	Et = self.alpha * self.E
	self.trialYielding = True
Ģ	return self.trialStress, Et

Yielding Criteria

• Tresca: "It is shear stress"

J_2 **Plasticity**

• Yield function: $f = |\sigma| - f_y$

 $f = \left| \boldsymbol{\sigma} - \boldsymbol{\sigma}^{kin} \right| - \left(f_y + f^{iso} \right)$

 Kinematic hardening: Movement of elastic region

Isotropic hardening:
Expansion of elastic region

Bouc-Wen

Algorithmic Tangent Modulus

Continuum tangent: Differentiate equations

Algorithmic tangent: Differentiate algorithm

• Newton-Raphson convergence requires the algorithmic tangent

Backbone Curve

Degradation

... in stiffness

... in strength

... between cycles

... within a cycle

Pinching

More lectures:

Terje's Toobox:

terje.civil.ubc.ca