A short course on

Structural Reliability

This lecture:
FOSM \& FORM

Terje's Toolbox is freely available at terje.civil.ubc.ca
It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng.
Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Reliability Methods

$$
\begin{gathered}
\text { Reliability }=1-p_{f} \\
p_{f}=\mathrm{P}(g \leq 0)=\int_{g \leq 0} \cdots \int f(\mathbf{x}) d \mathbf{x}
\end{gathered}
$$

MCFOSM	$=$ mean-centred first-order second-moment method
FOSM	$=$ first-order second-moment method
FORM	$=$ first-order reliability method
SORM	$=$ second-order reliability method
MC	$=$ Monte Carlo sampling
IS	$=$ importance sampling
SS	$=$ subset sampling
DS	$=$ directional sampling

MCFOSM

$$
p_{f}=\mathrm{P}(g \leq 0)=\Phi\left(\frac{g-\mu_{g}}{\sigma_{g}}\right)=\Phi\left(-\frac{\mu_{g}}{\sigma_{g}}\right)=\Phi(-\beta) \quad\left(\text { Why seek } p_{f} \text { ? Appreciate } \beta!\right)
$$

What is β ?

Invariance Problem

$$
\mu_{R}=30, \mu_{S}=20, \sigma_{R}=5, \sigma_{S}=10, \rho_{R S}=0.5
$$

Univariate Explanation

Solution

Linearizing nonlinear $g(\mathbf{x})$ at $\mathbf{x}=\mathbf{M}_{\mathrm{x}}$ causes the invariance problem

FOSM and FORM linearizes somewhere on the limit-state surface

To understand \& solve the issue:

Functions of random variables
Probability transformations

Geometric Interpretation of β

Consider a linear limit-state function: $g(\mathbf{X})=a+\mathbf{b}^{T} \mathbf{X}$

Transform into a standardized space: $\mathbf{X}=\mathbf{M}_{X}+\mathbf{D}_{X} \mathbf{L Y}$

Resulting limit-state function (notice capital G): $G(\mathbf{Y})=a+\mathbf{b}^{T} \mathbf{M}_{X}+\mathbf{b}^{T} \mathbf{D}_{X} \mathbf{L Y}$

$$
=c+\mathbf{d}^{T} \mathbf{Y}
$$

$$
\text { MCFOSM: } \beta=\frac{\mu_{G}}{\sigma_{G}}=\frac{c}{\sqrt{\mathbf{d}^{T} \mathbf{d}}}=\frac{c}{\|\mathbf{d}\|}
$$

Distance from point to plane: $\Delta=\left|\frac{G(\mathbf{0})}{\|\nabla G\|}\right|=\left|\frac{c}{\|\mathbf{d}\|}\right| \longleftrightarrow$ Identical!

Original space:

MCFOSM:

$$
\begin{aligned}
& \beta_{1}=1.15 \\
& \beta_{2}=0.92
\end{aligned}
$$

Visualization

$$
\mu_{R}=30, \mu_{S}=20, \sigma_{R}=5, \sigma_{S}=10, \rho_{R S}=0.5
$$

$$
\beta_{3}=1.13
$$

Design Point

Sequential Linearization

$$
G(\mathbf{y}) \approx G\left(\mathbf{y}_{m}\right)+\nabla G\left(\mathbf{y}_{m}\right)^{T} \cdot\left(\mathbf{y}-\mathbf{y}_{m}\right)=0
$$

$$
\Delta=\frac{G(\mathbf{0})}{\left\|\nabla G\left(\mathbf{y}_{m}\right)\right\|}=\frac{G\left(\mathbf{y}_{m}\right)-\nabla G\left(\mathbf{y}_{m}\right)^{T} \cdot \mathbf{y}_{m}}{\left\|\nabla G\left(\mathbf{y}_{m}\right)\right\|}=\frac{G\left(\mathbf{y}_{m}\right)}{\left\|\nabla G\left(\mathbf{y}_{m}\right)\right\|}+\boldsymbol{\alpha}^{T} \cdot \mathbf{y}_{m}
$$

$$
\mathbf{y}_{m+1}=-\Delta \cdot \frac{\nabla G\left(\mathbf{y}_{m}\right)}{\left\|\nabla G\left(\mathbf{y}_{m}\right)\right\|} \equiv \Delta \cdot \boldsymbol{\alpha}
$$

Search Direction \& Step Size

$$
\begin{gathered}
\mathbf{y}_{m+1}=\mathbf{y}_{m}+s_{m} \cdot \mathbf{d}_{m} \\
\mathbf{d}_{m}=\mathbf{y}_{m+1}-\mathbf{y}_{m}=\left(\frac{G\left(\mathbf{y}_{m}\right)}{\left\|\nabla G\left(\mathbf{y}_{m}\right)\right\|}+\boldsymbol{\alpha}^{T} \cdot \mathbf{y}_{m}\right) \boldsymbol{\alpha}-\mathbf{y}_{m} \\
\text { Step size options: }\left\{\begin{array}{l}
s_{m}=1 \\
s_{m}=b^{k} \quad \text { (Armijo's rule, typically } b=0.5, k=0,1,2,3, \ldots \text {) } \\
s_{m}=\text { Unidirectional optimization algorithm (golden section, etc.) }
\end{array}\right. \\
\end{gathered}
$$

Convergence Criteria

$$
\begin{gathered}
\left|\frac{G\left(\mathbf{y}_{m}\right)}{G_{0}}\right| \leq e_{1} \\
\left\|\mathbf{y}_{m}-\left(\boldsymbol{\alpha}_{m}^{T} \mathbf{y}_{m}\right) \boldsymbol{\alpha}_{m}\right\| \leq e_{2}
\end{gathered}
$$

Analysis Procedure

1. Set $m=1$
2. Select starting point in standard space: \mathbf{y}_{m}
3. Transform into original space: $\mathbf{y}_{m} \rightarrow \mathbf{x}_{m}$
4. Evaluate limit-state function $G\left(\mathbf{y}_{m}\right)=g\left(\mathbf{x}_{m}\right)$
5. Evaluate gradient of limit-state function: $\frac{\partial G}{\partial \mathbf{y}}=\frac{\partial g}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \mathbf{y}}$
6. If $m=1$, set scaling factor for first convergence criterion: $G_{0}=G\left(\mathbf{y}_{m}\right)$
7. Check convergence: $\left|\frac{G\left(\mathbf{y}_{m}\right)}{G_{0}}\right| \leq e_{1} \quad\left\|\mathbf{y}_{m}-\left(\boldsymbol{\alpha}_{m}^{T} \mathbf{y}_{m}\right) \boldsymbol{\alpha}_{m}\right\| \leq e_{2}$
8. If convergence is NOT achieved, go back to Step 3 with: $\mathbf{y}_{m+1}=\mathbf{y}_{m}+s_{m} \cdot \mathbf{d}_{m}$
9. If convergence is achieved: $\quad \beta=\left\|\mathbf{y}^{*}\right\| \quad p_{f}=\Phi(-\beta)$

Evolution of the Search

More slides to come here...

More lectures:

Terje's Toobox:
terje.civil.ubc.ca

