A short course on

Structural Reliability

This lecture: FOSM & FORM

Terje's Toolbox is freely available at <u>terje.civil.ubc.ca</u> It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng., Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Reliability Methods

Reliability = $1 - p_f$

$$p_f = \mathbf{P}(g \le 0) = \int_{g \le 0} \cdots \int f(\mathbf{x}) d\mathbf{x}$$

MCFOSM = mean-centred first-order second-moment method FOSM = first-order second-moment method FORM = first-order reliability method = second-order reliability method SORM MC = Monte Carlo sampling = importance sampling IS = subset sampling SS = directional sampling DS

MCFOSM

^S

$$p_{j} = P(g \le 0) = \Phi\left(\frac{g - \mu_{g}}{\sigma_{g}}\right) = \Phi\left(-\frac{\mu_{g}}{\sigma_{g}}\right) = \Phi(-\beta) \quad \text{(Why seek } p_{f} ? \text{ Appreciate } \beta \text{ !}$$

$$r < s \quad r > s$$

$$\beta = \frac{\mu_{g}}{\sigma_{g}}$$

$$\mu_{g} \approx g(\mathbf{M}_{X})$$

$$\sigma_{g} \approx \sqrt{\nabla g(\mathbf{M}_{X})^{T} \mathbf{\Sigma}_{XX} \nabla g(\mathbf{M}_{X})}$$

$$r$$

What is β ?

Invariance Problem

 μ_R =30, μ_S =20, σ_R =5, σ_S =10, ρ_{RS} =0.5

Univariate Explanation

Linearizing nonlinear $g(\mathbf{x})$ at $\mathbf{x}=\mathbf{M}_{\mathbf{x}}$ causes the invariance problem

FOSM and FORM linearizes somewhere on the limit-state surface

To understand & solve the issue:

Functions of random variables Probability transformations

Geometric Interpretation of β

Consider a linear limit-state function: $g(\mathbf{X}) = a + \mathbf{b}^T \mathbf{X}$

Transform into a standardized space: $\mathbf{X} = \mathbf{M}_{x} + \mathbf{D}_{x}\mathbf{L}\mathbf{Y}$

Resulting limit-state function (notice capital G): $G(\mathbf{Y}) = a + \mathbf{b}^T \mathbf{M}_X + \mathbf{b}^T \mathbf{D}_X \mathbf{L} \mathbf{Y}$ = $c + \mathbf{d}^T \mathbf{Y}$

MCFOSM:
$$\beta = \frac{\mu_G}{\sigma_G} = \frac{c}{\sqrt{\mathbf{d}^T \mathbf{d}}} = \frac{c}{\|\mathbf{d}\|}$$

Distance from point to plane: $\Delta = \left| \frac{G(\mathbf{0})}{\|\nabla G\|} \right| = \left| \frac{c}{\|\mathbf{d}\|} \right|$

MCFOSM:

 $\beta_1 = 1.15$

 $\beta_2 = 0.92$

 $\beta_3 = 1.13$

Visualization

$$\mu_R$$
=30, μ_S =20, σ_R =5, σ_S =10, ρ_{RS} =0.5

Design Point

Sequential Linearization

$$G(\mathbf{y}) \approx G(\mathbf{y}_m) + \nabla G(\mathbf{y}_m)^T \cdot (\mathbf{y} - \mathbf{y}_m) = 0$$

$$\Delta = \frac{G(\mathbf{0})}{\left\|\nabla G(\mathbf{y}_m)\right\|} = \frac{G(\mathbf{y}_m) - \nabla G(\mathbf{y}_m)^T \cdot \mathbf{y}_m}{\left\|\nabla G(\mathbf{y}_m)\right\|} = \frac{G(\mathbf{y}_m)}{\left\|\nabla G(\mathbf{y}_m)\right\|} + \boldsymbol{\alpha}^T \cdot \mathbf{y}_m$$

$$\mathbf{y}_{m+1} = -\Delta \cdot \frac{\nabla G(\mathbf{y}_m)}{\left\|\nabla G(\mathbf{y}_m)\right\|} \equiv \Delta \cdot \boldsymbol{\alpha}$$

Search Direction & Step Size

 $\mathbf{y}_{m+1} = \mathbf{y}_m + s_m \cdot \mathbf{d}_m$

$$\mathbf{d}_{m} = \mathbf{y}_{m+1} - \mathbf{y}_{m} = \left(\frac{G(\mathbf{y}_{m})}{\left\|\nabla G(\mathbf{y}_{m})\right\|} + \boldsymbol{\alpha}^{T} \cdot \mathbf{y}_{m}\right) \boldsymbol{\alpha} - \mathbf{y}_{m}$$

Step size options:
$$\begin{cases} s_m = 1 \\ s_m = b^k \text{ (Armijo's rule, typically } b=0.5, k=0,1,2,3,...) \\ s_m = \text{Unidirectional optimization algorithm (golden section, etc.)} \end{cases}$$

Convergence Criteria

Analysis Procedure

- 1. Set *m*=1
- 2. Select starting point in standard space: y_m
- 3. Transform into original space: $y_m \rightarrow x_m$

4. Evaluate limit-state function
$$G(\mathbf{y}_m)=g(\mathbf{x}_m)$$

5. Evaluate gradient of limit-state function:
$$\frac{\partial G}{\partial y} = \frac{\partial g}{\partial u} \frac{\partial u}{\partial x} \frac{\partial x}{\partial y}$$

- 6. If m=1, set scaling factor for first convergence criterion: $G_0=G(\mathbf{y}_m)$
- 7. Check convergence: $\left|\frac{G(\mathbf{y}_m)}{G_0}\right| \le e_1 \qquad \left\|\mathbf{y}_m \left(\mathbf{\alpha}_m^T \mathbf{y}_m\right)\mathbf{\alpha}_m\right\| \le e_2$
- 8. If convergence is NOT achieved, go back to Step 3 with: $\mathbf{y}_{m+1} = \mathbf{y}_m + s_m \cdot \mathbf{d}_m$
- 9. If convergence is achieved: $\beta = \|\mathbf{y}^*\|$ $p_f = \Phi(-\beta)$

Evolution of the Search

More slides to come here...

More lectures:

Terje's Toobox:

terje.civil.ubc.ca