Nonlinear Dynamic Analysis

The governing system of equations for this class of problems is

$$
\begin{equation*}
\mathbf{M} \ddot{\mathbf{u}}+\mathbf{C} \dot{\mathbf{u}}+\tilde{\mathbf{F}}(\mathbf{u})=\mathbf{F} \tag{1}
\end{equation*}
$$

where $\mathbf{M}=$ mass matrix, $\mathbf{u}=$ displacement vector, each dot means one derivative with respect to time, $\mathbf{C}=$ damping matrix, $\tilde{\mathbf{F}}=$ internal resisting force, and $\mathbf{F}=$ applied forces. As in the document on linear dynamic problems, Rayleigh damping is assumed, implying that \mathbf{C} is a combination of \mathbf{M} and \mathbf{K}. By introducing the generic time-stepping scheme

$$
\begin{align*}
& \ddot{\mathbf{u}}_{n+1}=a_{1} \cdot \mathbf{u}_{n+1}+a_{2} \cdot \mathbf{u}_{n}+a_{3} \cdot \dot{\mathbf{u}}_{n}+a_{4} \cdot \ddot{\mathbf{u}}_{n} \tag{2}\\
& \dot{\mathbf{u}}_{n+1}=a_{5} \cdot \mathbf{u}_{n+1}+a_{6} \cdot \mathbf{u}_{n}+a_{7} \cdot \dot{\mathbf{u}}_{n}+a_{8} \cdot \ddot{\mathbf{u}}_{n}
\end{align*}
$$

where the special case of the Newmark algorithm with $\beta=0.25$ and $\gamma=0.5$ is written

- $a_{1}=1 /\left(\beta \Delta t^{2}\right)$
- $a_{2}=-a_{1}$
- $a_{3}=-1.0 /(\beta \Delta t)$
- $a_{4}=1.0-1 /(2 \beta)$
- $a_{5}=\gamma /(\beta \Delta t)$
- $a_{6}=-a_{5}$
- $a_{7}=1-\gamma / \beta$
- $a_{8}=\Delta t(1-\gamma /(2 \beta))$
the space- and time-discretized equations of motion read

$$
\begin{align*}
\mathbf{M}\left(a_{1} \mathbf{u}_{n+1}+a_{2} \mathbf{u}_{n}+a_{3} \dot{\mathbf{u}}_{n}+\right. & \left.a_{4} \ddot{\mathbf{u}}_{n}\right)+\mathbf{C}\left(a_{5} \mathbf{u}_{n+1}+a_{6} \mathbf{u}_{n}+a_{7} \dot{\mathbf{u}}_{n}+a_{8} \ddot{\mathbf{u}}_{n}\right) \tag{3}\\
& +\tilde{\mathbf{F}}_{n+1}=\mathbf{F}_{n+1}
\end{align*}
$$

In the context of nonlinear analysis, Eq. (3) may be compared to $\tilde{\mathbf{F}}=\mathbf{F}$ for static analysis. In static analysis, the residual, $\mathbf{R}=\tilde{\mathbf{F}}-\mathbf{F}$, is defined, and the Newton-Raphson algorithm is essentially $\partial \mathbf{R} / \partial \mathbf{u} \Delta \mathbf{u}=-\mathbf{R}$, where the stiffness is $\partial \mathbf{R} / \partial \mathbf{u}=\partial \tilde{\mathbf{F}} / \partial \mathbf{u}$. Similarly, the residual for nonlinear dynamic is

$$
\begin{gather*}
\mathbf{R}=\tilde{\mathbf{F}}_{n+1}-\mathbf{F}_{n+1} \\
+\mathbf{M}\left(a_{1} \mathbf{u}_{n+1}+a_{2} \mathbf{u}_{n}+a_{3} \dot{\mathbf{u}}_{n}+a_{4} \ddot{\mathbf{u}}_{n}\right)+\mathbf{C}\left(a_{5} \mathbf{u}_{n+1}+a_{6} \mathbf{u}_{n}+a_{7} \dot{\mathbf{u}}_{n}+a_{8} \ddot{\mathbf{u}}_{n}\right) \tag{4}
\end{gather*}
$$

In this case, the extended expression for the stiffness is

$$
\begin{equation*}
\frac{\partial \mathbf{R}}{\partial \mathbf{u}_{n+1}}=\frac{\partial \tilde{\mathbf{F}}_{n+1}}{\partial \mathbf{u}_{n+1}}+a_{1} \mathbf{M}+a_{5} \mathbf{C} \tag{5}
\end{equation*}
$$

With those new expressions for the residual and its derivative, the iterations of the Newton-Raphson algorithm proceeds, at each time step, as it does for static problems:

Time step increments:

Determine load vector, \mathbf{F}, e.g., $\mathbf{F}=-\boldsymbol{\Gamma} \cdot \mathbf{M} \cdot \ddot{u}_{g}(t)$ for ground motion
Newton-Raphson equilibrium iterations:
Calculate effective tangent stiffness $\partial \mathbf{R} / \partial \mathbf{u}=a_{1} \mathbf{M}+a_{5} \mathbf{C}+\partial \tilde{\mathbf{F}} / \partial \mathbf{u}$
Solve linear system $\partial \mathbf{R} / \partial \mathbf{u} \Delta \mathbf{u}=-\mathbf{R}$ for displacement increment, $\Delta \mathbf{u}$
Calculate new trial displacements $\mathbf{u}_{i+1}=\mathbf{u}_{i}+\Delta \mathbf{u}$
Calculate velocities and accelerations from Eq. (2)
Conduct state determination, i.e., calculate $\tilde{\mathbf{F}}\left(\mathbf{u}_{n+1}\right)$ and $\partial \widetilde{\mathbf{F}} / \partial \mathbf{u}_{n+1}$
Evaluate the residual in Eq. (4)
Keep iterating until the norm of the residual, $\|\mathbf{R}\|$, is sufficiently small
Upon convergence of iterations, issue commit order to all hysteretic materials

