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A short course on

Nonlinear Finite Element Analysis

This video: 
Newton-Raphson and Load Incrementation



Notation from Linear Analysis

𝐊𝐮 + $𝐅 = '𝐅

𝐊𝐮 = '𝐅 − $𝐅 = 𝐅

𝐊𝐮 = 𝐅

𝐅 = 𝐊𝐮 + $𝐅Member end forces after solving equilibrium equations:

Equilibrium equations:

Split member forces and point loads:

Total load vector:

Fi = force along DOF i
due to external loads

Kij uj = FiIndex notation:

uj = unknown displacement 
or rotation along DOF j

Kij = force along DOF i due to a 
unit disp./rot. along DOF j



Nonlinear Analysis

)𝐅 𝐮 = 𝐅Equilibrium equations:

Externally applied loadsInternal resisting forces
(nonlinear function of u)



Configurations

ubKb BASIC

ub=TblulFl=TblFb

ulKl=TblKbTbl

ul=TlgugFg=TlgFl

ugKg=TlgKlTlg

ug=TgauaFa= S(TgaFg)

ua

ua=TafufFf=TafFa

ufKf=TafKaTaf
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Added in Nonlinear Analysis
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Analysis Procedure

1. Determine trial displacements, uf  (will soon see how)

2. Determine corresponding strain, 𝜀 = 𝐓'&𝐓&%𝐓%$𝐓$#𝐓#"𝐓"!𝐮! (can do better than 𝐓#"𝐓"!)

3. Determine stress for given strain from the material law, often history-dependent, i.e., hysteretic

4. Determine resisting forces:

5. Check convergence:  )𝐅 = 𝐅 ?

)𝐅! 𝐮! = 𝐓"!+ 3 𝐓#"+ 𝐓$#+ 𝐓%$+ 4
)

*

𝐓&%( 4𝐓'&( , 𝜎	𝑑𝐴 𝑑𝑥 + $𝐅%



Newton-Raphson

Equilibrium on residual form:  )𝐅 𝐮 − 𝐅 = 𝐑 = 𝟎 

First-order Taylor expansion of the residual:  𝐑 𝐮 = 𝐑 𝐮, + -𝐑 𝐮!
-𝐮

𝐮 − 𝐮,

Set the residual to zero and recognize linear system of equations:  -𝐑 𝐮!
-𝐮

Δ𝐮 = −𝐑 𝐮,  

Because R is a nonlinear function of u, we iterate:  𝐮,01 = 𝐮, + Δ𝐮 

About the derivative:  -𝐑 𝐮!
-𝐮

= - 2𝐅 𝐮!
-𝐮

= 𝐊4567864

(the trial displacements)



Tangent Stiffness

Force

Displacement

Initial stiffness Tangent stiffness



Modified Newton-Raphson

Linear system of equations in each iteration:  -𝐑 𝐮!
-𝐮

Δ𝐮 = −𝐑 𝐮,  

Newton-Raphson:	 𝐊4567864	Δ𝐮 = −𝐑 𝐮,  

Modified Newton-Raphson: 𝐊969495:	Δ𝐮 = −𝐑 𝐮,  



The Two Options

Force

Displacement

Level of the applied external forces

Equilibrium

Resisting force at trial displacements 
(not valid equilibrium solutions)

Newton-Raphson: 

Modified Newton-Raphson: 
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Python Code
while resNorm > tol and i < maxIterations:

    # Check if user wants Modified Newton-Raphson
    if m == stiffnessCalcFrequency:

        m = 0

        # Basic stiffnesses
        Kb1 = (spring1(ub1))[1]
        Kb2 = (spring2(ub2))[1]
        Kb3 = (spring3(ub3))[1]

        # Final stiffness matrix
        Kf = np.transpose(Tbf1 * Kb1).dot(Tbf1) + np.transpose(Tbf2 * Kb2).dot(Tbf2) + np.transpose(Tbf3 * Kb3).dot(Tbf3)

    # Solve for the displacement increment
    duf = np.linalg.solve(Kf, -Rf)

    # New trial displacements
    uf = uf + duf

    # State determination, starting with Basic displacements
    ub1 = np.dot(Tbf1, uf)
    ub2 = np.dot(Tbf2, uf)
    ub3 = np.dot(Tbf3, uf)

    # Basic forces
    Fb1 = (spring1(ub1))[0]
    Fb2 = (spring2(ub2))[0]
    Fb3 = (spring3(ub3))[0]

    # Final force vector
    tildeFf = np.dot(Tbf1.transpose(), Fb1) + np.dot(Tbf2.transpose(), Fb2) + np.dot(Tbf3.transpose(), Fb3)

    # Residual vectdor and its norm
    Rf = tildeFf - Ff
    resNorm = np.linalg.norm(Rf)



State Determination

)𝐅! 𝐮! = 𝐓"!+ 3 𝐓#"+ 𝐓$#+ 𝐓%$+ 4
)

*

𝐓&%( 4𝐓'&( , 𝜎	𝑑𝐴 𝑑𝑥 + $𝐅%

𝜀 = 𝐓'&𝐓&%𝐓%$𝐓$#𝐓#"𝐓"!𝐮!

Trial displacements

Material model(s) that take total strain, or incremental strain, or both

Check convergence



Iterations vs. Increments

Displacement

Load factor, l

Newton-Raphson iterations, i

Load increments, n
Newton-Raphson iterations, i

Newton-Raphson iterations, i



Load Factor, l

𝐅!(𝑡) = λ(𝑡) , 𝐅;<!

l(t)

t

l(t)

t

l(t)

t

Load factor Load patternPseudo-time

Time series



Match Number of Time Steps with Dt

Suppose a 5kN load is to be applied gradually to the structure

Many options!

Set Fref = 5kN and l(t)=t, reaching the full load at pseudo time t=1

Set Fref = 5kN and l(t)=0.01t, reaching the full load at time t=100

Set Fref = 1kN and l(t)=t, reaching the full load at time t=5

Set Fref = 1kN and l(t)=0.1t, reaching the full load at time t=50



Continuation Methods

Force

Displacement

Post-peak response



Load Control during Iterations, Part I

λ= = λ=>1 + Δ𝜆 

𝐅= = 𝐅=>1 + Δ𝜆 , 𝐅;<! 

𝐑, = )𝐅, − 𝐅= = )𝐅, − 𝐅=>1 − Δ𝜆 , 𝐅;<! 

𝐑, = )𝐅, − 𝐅,>1 − Δ𝜆, , 𝐅;<! 

𝐮, = 𝐮,>1 + Δ𝐮,  

𝐊	Δ𝐮, = −𝐑,  

𝐊	Δ𝐮, = 𝐅,>1 + Δ𝜆, , 𝐅;<! − )𝐅,  

Isolate the change in the load factor in this increment:

Resulting increment in the load:

Resulting expression for the residual:

Allow the load factor to vary within the iterations (n à i):

Steadily accumulating trial displacements:

Linear system of equations for Dui:

Substitute expression for the residual:



Load Control during Iterations, Part II

𝐊	Δ𝐮?,, = 𝐅,>1 − )𝐅,  

𝐊	Δ𝐮(,, = Δ𝜆, , 𝐅;<! 

𝐊	Δ𝐮?,, = 𝜆,>1 , 𝐅;<! − )𝐅,  

Δ𝐮(,, = Δ𝜆, , Δ𝐮( 

𝐊	𝐮( = 𝐅;<! 

Δ𝐮, = Δ𝐮?,, + Δ𝜆, , 𝐮( 

First term in the split Dui =DuR,i + DuT,i:

Second term in the split Dui =DuR,i + DuT,i:

Namely:

Define reference displacement, constant through iterations:

That means the second term is:

So the split Dui reads:



Displacement Control

𝐬(Δ𝐮, = 𝐬(Δ𝐮?,, + Δ𝜆, , 𝐬(𝐮( 

Δ𝜆, = − 𝐬"B𝐮#,!
𝐬"𝐮"

 

Δ𝜆1 =
∆D%
𝐬"𝐮"

 

Enforce displacement at a control-DOF: One less unknown!

Displacement increment at control-DOF:

Selection vector: 𝐬 = 0,0,0,1,0,0,0,0,0

Solve for Δ𝜆,, remembering that Δ𝐮?,, is zero at first iteration:

First iteration: 𝐬(Δ𝐮, = 𝐬(Δ𝐮?,, + Δ𝜆, , 𝐬(𝐮( = ∆𝑢E

Later iterations:

Result:

𝐬(Δ𝐮, = 𝐬(Δ𝐮?,, + Δ𝜆, , 𝐬(𝐮( = 0



More lectures:

Terje’s Toobox:

terje.civil.ubc.ca


