
Terje’s Toolbox is freely available at terje.civil.ubc.ca
It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng.,

Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

A short course on

Nonlinear Finite Element Analysis

This video:
Newton-Raphson and Load Incrementation

Notation from Linear Analysis

𝐊𝐮 + $𝐅 = '𝐅

𝐊𝐮 = '𝐅 − $𝐅 = 𝐅

𝐊𝐮 = 𝐅

𝐅 = 𝐊𝐮 + $𝐅Member end forces after solving equilibrium equations:

Equilibrium equations:

Split member forces and point loads:

Total load vector:

Fi = force along DOF i
due to external loads

Kij uj = FiIndex notation:

uj = unknown displacement
or rotation along DOF j

Kij = force along DOF i due to a
unit disp./rot. along DOF j

Nonlinear Analysis

)𝐅 𝐮 = 𝐅Equilibrium equations:

Externally applied loadsInternal resisting forces
(nonlinear function of u)

Configurations

ubKb BASIC

ub=TblulFl=TblFb

ulKl=TblKbTbl

ul=TlgugFg=TlgFl

ugKg=TlgKlTlg

ug=TgauaFa= S(TgaFg)

ua

ua=TafufFf=TafFa

ufKf=TafKaTaf

LOCAL

GLOBAL

ALL

FINAL

T

T

T

T

T

T

T

2
1

3

4
6

5
31

2

3
1

2

4 6
5

1

2

3

4

5

6

7

8
9

10

11

12

1

2

3

4
5
6

Ka=S(TgaKgTga)T

)𝐅!

)𝐅"

)𝐅#

)𝐅$

)𝐅%

Added in Nonlinear Analysis

ub

us

us=Tsbub

emsm

e =Tmsus

e
s

)𝐅& = ∫𝐓'&(, 𝜎	𝑑𝐴

)𝐅&

)𝐅%

)𝐅% = ∫)
*𝐓&%()𝐅&	𝑑𝑥+ $𝐅%

A

BASIC

SECTION

MATERIAL

Analysis Procedure

1. Determine trial displacements, uf (will soon see how)

2. Determine corresponding strain, 𝜀 = 𝐓'&𝐓&%𝐓%$𝐓$#𝐓#"𝐓"!𝐮! (can do better than 𝐓#"𝐓"!)

3. Determine stress for given strain from the material law, often history-dependent, i.e., hysteretic

4. Determine resisting forces:

5. Check convergence:)𝐅 = 𝐅 ?

)𝐅! 𝐮! = 𝐓"!+ 3 𝐓#"+ 𝐓$#+ 𝐓%$+ 4
)

*

𝐓&%(4𝐓'&(, 𝜎	𝑑𝐴 𝑑𝑥 + $𝐅%

Newton-Raphson

Equilibrium on residual form:)𝐅 𝐮 − 𝐅 = 𝐑 = 𝟎

First-order Taylor expansion of the residual: 𝐑 𝐮 = 𝐑 𝐮, + -𝐑 𝐮!
-𝐮

𝐮 − 𝐮,

Set the residual to zero and recognize linear system of equations: -𝐑 𝐮!
-𝐮

Δ𝐮 = −𝐑 𝐮,

Because R is a nonlinear function of u, we iterate: 𝐮,01 = 𝐮, + Δ𝐮

About the derivative: -𝐑 𝐮!
-𝐮

= - 2𝐅 𝐮!
-𝐮

= 𝐊4567864

(the trial displacements)

Tangent Stiffness

Force

Displacement

Initial stiffness Tangent stiffness

Modified Newton-Raphson

Linear system of equations in each iteration: -𝐑 𝐮!
-𝐮

Δ𝐮 = −𝐑 𝐮,

Newton-Raphson:	 𝐊4567864	Δ𝐮 = −𝐑 𝐮,

Modified Newton-Raphson: 𝐊969495:	Δ𝐮 = −𝐑 𝐮,

The Two Options

Force

Displacement

Level of the applied external forces

Equilibrium

Resisting force at trial displacements
(not valid equilibrium solutions)

Newton-Raphson:

Modified Newton-Raphson:

Convergence
R

es
id

ua
l n

or
m

Displacement Displacement

Newton-Raphson: Modified Newton-Raphson:

R
es

id
ua

l n
or

m

Python Code
while resNorm > tol and i < maxIterations:

 # Check if user wants Modified Newton-Raphson
 if m == stiffnessCalcFrequency:

 m = 0

 # Basic stiffnesses
 Kb1 = (spring1(ub1))[1]
 Kb2 = (spring2(ub2))[1]
 Kb3 = (spring3(ub3))[1]

 # Final stiffness matrix
 Kf = np.transpose(Tbf1 * Kb1).dot(Tbf1) + np.transpose(Tbf2 * Kb2).dot(Tbf2) + np.transpose(Tbf3 * Kb3).dot(Tbf3)

 # Solve for the displacement increment
 duf = np.linalg.solve(Kf, -Rf)

 # New trial displacements
 uf = uf + duf

 # State determination, starting with Basic displacements
 ub1 = np.dot(Tbf1, uf)
 ub2 = np.dot(Tbf2, uf)
 ub3 = np.dot(Tbf3, uf)

 # Basic forces
 Fb1 = (spring1(ub1))[0]
 Fb2 = (spring2(ub2))[0]
 Fb3 = (spring3(ub3))[0]

 # Final force vector
 tildeFf = np.dot(Tbf1.transpose(), Fb1) + np.dot(Tbf2.transpose(), Fb2) + np.dot(Tbf3.transpose(), Fb3)

 # Residual vectdor and its norm
 Rf = tildeFf - Ff
 resNorm = np.linalg.norm(Rf)

State Determination

)𝐅! 𝐮! = 𝐓"!+ 3 𝐓#"+ 𝐓$#+ 𝐓%$+ 4
)

*

𝐓&%(4𝐓'&(, 𝜎	𝑑𝐴 𝑑𝑥 + $𝐅%

𝜀 = 𝐓'&𝐓&%𝐓%$𝐓$#𝐓#"𝐓"!𝐮!

Trial displacements

Material model(s) that take total strain, or incremental strain, or both

Check convergence

Iterations vs. Increments

Displacement

Load factor, l

Newton-Raphson iterations, i

Load increments, n
Newton-Raphson iterations, i

Newton-Raphson iterations, i

Load Factor, l

𝐅!(𝑡) = λ(𝑡) , 𝐅;<!

l(t)

t

l(t)

t

l(t)

t

Load factor Load patternPseudo-time

Time series

Match Number of Time Steps with Dt

Suppose a 5kN load is to be applied gradually to the structure

Many options!

Set Fref = 5kN and l(t)=t, reaching the full load at pseudo time t=1

Set Fref = 5kN and l(t)=0.01t, reaching the full load at time t=100

Set Fref = 1kN and l(t)=t, reaching the full load at time t=5

Set Fref = 1kN and l(t)=0.1t, reaching the full load at time t=50

Continuation Methods

Force

Displacement

Post-peak response

Load Control during Iterations, Part I

λ= = λ=>1 + Δ𝜆

𝐅= = 𝐅=>1 + Δ𝜆 , 𝐅;<!

𝐑, =)𝐅, − 𝐅= =)𝐅, − 𝐅=>1 − Δ𝜆 , 𝐅;<!

𝐑, =)𝐅, − 𝐅,>1 − Δ𝜆, , 𝐅;<!

𝐮, = 𝐮,>1 + Δ𝐮,

𝐊	Δ𝐮, = −𝐑,

𝐊	Δ𝐮, = 𝐅,>1 + Δ𝜆, , 𝐅;<! −)𝐅,

Isolate the change in the load factor in this increment:

Resulting increment in the load:

Resulting expression for the residual:

Allow the load factor to vary within the iterations (n à i):

Steadily accumulating trial displacements:

Linear system of equations for Dui:

Substitute expression for the residual:

Load Control during Iterations, Part II

𝐊	Δ𝐮?,, = 𝐅,>1 −)𝐅,

𝐊	Δ𝐮(,, = Δ𝜆, , 𝐅;<!

𝐊	Δ𝐮?,, = 𝜆,>1 , 𝐅;<! −)𝐅,

Δ𝐮(,, = Δ𝜆, , Δ𝐮(

𝐊	𝐮(= 𝐅;<!

Δ𝐮, = Δ𝐮?,, + Δ𝜆, , 𝐮(

First term in the split Dui =DuR,i + DuT,i:

Second term in the split Dui =DuR,i + DuT,i:

Namely:

Define reference displacement, constant through iterations:

That means the second term is:

So the split Dui reads:

Displacement Control

𝐬(Δ𝐮, = 𝐬(Δ𝐮?,, + Δ𝜆, , 𝐬(𝐮(

Δ𝜆, = − 𝐬"B𝐮#,!
𝐬"𝐮"

Δ𝜆1 =
∆D%
𝐬"𝐮"

Enforce displacement at a control-DOF: One less unknown!

Displacement increment at control-DOF:

Selection vector: 𝐬 = 0,0,0,1,0,0,0,0,0

Solve for Δ𝜆,, remembering that Δ𝐮?,, is zero at first iteration:

First iteration: 𝐬(Δ𝐮, = 𝐬(Δ𝐮?,, + Δ𝜆, , 𝐬(𝐮(= ∆𝑢E

Later iterations:

Result:

𝐬(Δ𝐮, = 𝐬(Δ𝐮?,, + Δ𝜆, , 𝐬(𝐮(= 0

More lectures:

Terje’s Toobox:

terje.civil.ubc.ca

