A short course on

Nonlinear Finite Element Analysis

This video: Newton-Raphson and Load Incrementation

Terje's Toolbox is freely available at <u>terje.civil.ubc.ca</u> It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng., Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Notation from Linear Analysis

Equilibrium equations: Ku = F

Split member forces and point loads: $\mathbf{K}\mathbf{u} + \overline{\mathbf{F}} = \hat{\mathbf{F}}$

Total load vector: $\mathbf{K}\mathbf{u} = \dot{\mathbf{F}} - \overline{\mathbf{F}} = \mathbf{F}$

Member end forces after solving equilibrium equations: $\mathbf{F} = \mathbf{K}\mathbf{u} + \mathbf{\bar{F}}$

Nonlinear Analysis

Added in Nonlinear Analysis

Analysis Procedure

- 1. Determine trial displacements, \mathbf{u}_{f} (will soon see how)
- 2. Determine corresponding strain, $\varepsilon = \mathbf{T}_{ms} \mathbf{T}_{sb} \mathbf{T}_{bl} \mathbf{T}_{lg} \mathbf{T}_{ga} \mathbf{T}_{af} \mathbf{u}_{f}$ (can do better than $\mathbf{T}_{ga} \mathbf{T}_{af}$)
- 3. Determine stress for given strain from the material law, often history-dependent, i.e., hysteretic
- 4. Determine resisting forces: $\tilde{\mathbf{F}}_{f}(\mathbf{u}_{f}) = \mathbf{T}_{af}^{T} \sum_{lg} \left(\mathbf{T}_{ga}^{T} \mathbf{T}_{lg}^{T} \mathbf{T}_{bl}^{T} \left(\int_{0}^{L} \mathbf{T}_{ms}^{T} \cdot \sigma \, dA \right) dx + \bar{\mathbf{F}}_{b} \right) \right)$
- 5. Check convergence: $\tilde{\mathbf{F}} = \mathbf{F}$?

Newton-Raphson

Equilibrium on residual form: $\tilde{F}(u) - F = R = 0$

First-order Taylor expansion of the residual: $\mathbf{R}(\mathbf{u}) = \mathbf{R}(\mathbf{u}_i) + \frac{\partial \mathbf{R}(\mathbf{u}_i)}{\partial \mathbf{u}}(\mathbf{u} - \mathbf{u}_i)$

Set the residual to zero and recognize linear system of equations: $\frac{\partial \mathbf{R}(\mathbf{u}_i)}{\partial \mathbf{u}} \Delta \mathbf{u} = -\mathbf{R}(\mathbf{u}_i)$

Because **R** is a nonlinear function of **u**, we iterate: $\mathbf{u}_{i+1} = \mathbf{u}_i + \Delta \mathbf{u}$ (the trial displacements)

About the derivative:
$$\frac{\partial \mathbf{R}(\mathbf{u}_i)}{\partial \mathbf{u}} = \frac{\partial \tilde{\mathbf{F}}(\mathbf{u}_i)}{\partial \mathbf{u}} = \mathbf{K}_{\text{tangent}}$$

Tangent Stiffness

Modified Newton-Raphson

Linear system of equations in each iteration: $\frac{\partial \mathbf{R}(\mathbf{u}_i)}{\partial \mathbf{u}} \Delta \mathbf{u} = -\mathbf{R}(\mathbf{u}_i)$

Newton-Raphson: $\mathbf{K}_{\text{tangent}} \Delta \mathbf{u} = -\mathbf{R}(\mathbf{u}_i)$

Modified Newton-Raphson: $\mathbf{K}_{\text{initial}} \Delta \mathbf{u} = -\mathbf{R}(\mathbf{u}_i)$

The Two Options

Convergence

Python Code

while resNorm > tol and i < maxIterations:</pre>

```
# Check if user wants Modified Newton-Raphson
if m == stiffnessCalcFrequency:
    m = 0
    # Basic stiffnesses
   Kb1 = (spring1(ub1))[1]
   Kb2 = (spring2(ub2))[1]
    Kb3 = (spring3(ub3))[1]
    # Final stiffness matrix
    Kf = np.transpose(Tbf1 * Kb1).dot(Tbf1) + np.transpose(Tbf2 * Kb2).dot(Tbf2) + np.transpose(Tbf3 * Kb3).dot(Tbf3)
# Solve for the displacement increment
duf = np.linalq.solve(Kf, -Rf)
# New trial displacements
uf = uf + duf
# State determination, starting with Basic displacements
ub1 = np.dot(Tbf1, uf)
ub2 = np.dot(Tbf2, uf)
ub3 = np.dot(Tbf3, uf)
# Basic forces
Fb1 = (spring1(ub1))[0]
Fb2 = (spring2(ub2))[0]
Fb3 = (spring3(ub3))[0]
# Final force vector
tildeFf = np.dot(Tbf1.transpose(), Fb1) + np.dot(Tbf2.transpose(), Fb2) + np.dot(Tbf3.transpose(), Fb3)
# Residual vectdor and its norm
Rf = tildeFf - Ff
resNorm = np.linalg.norm(Rf)
```

State Determination

$$\tilde{\mathbf{F}}_{f}(\mathbf{u}_{f}) = \mathbf{T}_{af}^{T} \sum \left(\mathbf{T}_{ga}^{T} \mathbf{T}_{lg}^{T} \mathbf{T}_{bl}^{T} \left(\int_{0}^{L} \mathbf{T}_{sb}^{T} \left(\int \mathbf{T}_{ms}^{T} \cdot \sigma \, dA \right) dx + \bar{\mathbf{F}}_{b} \right) \right)$$

Check convergence

Iterations vs. Increments

Load Factor, λ

Match Number of Time Steps with Δt

Suppose a 5kN load is to be applied gradually to the structure

Many options!

Set $\mathbf{F}_{ref} = 5$ kN and $\lambda(t) = t$, reaching the full load at pseudo time t=1

Set $\mathbf{F}_{ref} = 5$ kN and $\lambda(t) = 0.01t$, reaching the full load at time t = 100

Set $\mathbf{F}_{ref} = 1$ kN and $\lambda(t) = t$, reaching the full load at time t=5

Set $\mathbf{F}_{ref} = 1$ kN and $\lambda(t) = 0.1t$, reaching the full load at time t=50

Continuation Methods

Load Control during Iterations, Part I

Isolate the change in the load factor in this increment: $\lambda_n = \lambda_{n-1} + \Delta \lambda$

Resulting increment in the load: $\mathbf{F}_n = \mathbf{F}_{n-1} + \Delta \lambda \cdot \mathbf{F}_{ref}$

Resulting expression for the residual: $\mathbf{R}_i = \tilde{\mathbf{F}}_i - \mathbf{F}_n = \tilde{\mathbf{F}}_i - \mathbf{F}_{n-1} - \Delta \lambda \cdot \mathbf{F}_{ref}$

Allow the load factor to vary within the iterations $(n \rightarrow i)$: $\mathbf{R}_i = \tilde{\mathbf{F}}_i - \mathbf{F}_{i-1} - \Delta \lambda_i \cdot \mathbf{F}_{ref}$

Steadily accumulating trial displacements: $\mathbf{u}_i = \mathbf{u}_{i-1} + \Delta \mathbf{u}_i$

Linear system of equations for Δu_i : $\mathbf{K} \Delta \mathbf{u}_i = -\mathbf{R}_i$

Substitute expression for the residual: $\mathbf{K} \Delta \mathbf{u}_i = \mathbf{F}_{i-1} + \Delta \lambda_i \cdot \mathbf{F}_{ref} - \tilde{\mathbf{F}}_i$

Load Control during Iterations, Part II

First term in the split $\Delta \mathbf{u}_i = \Delta \mathbf{u}_{\mathrm{R},i} + \Delta \mathbf{u}_{\mathrm{T},i}$: $\mathbf{K} \Delta \mathbf{u}_{\mathrm{R},i} = \mathbf{F}_{i-1} - \mathbf{\tilde{F}}_i$

Namely:
$$\mathbf{K} \Delta \mathbf{u}_{\mathrm{R},i} = \lambda_{i-1} \cdot \mathbf{F}_{ref} - \tilde{\mathbf{F}}_i$$

Second term in the split
$$\Delta \mathbf{u}_i = \Delta \mathbf{u}_{\mathrm{R},i} + \Delta \mathbf{u}_{\mathrm{T},i}$$
: $\mathbf{K} \Delta \mathbf{u}_{\mathrm{T},i} = \Delta \lambda_i \cdot \mathbf{F}_{ref}$

Define reference displacement, constant through iterations: $K u_T = F_{ref}$

That means the second term is: $\Delta \mathbf{u}_{T,i} = \Delta \lambda_i \cdot \Delta \mathbf{u}_T$

So the split $\Delta \mathbf{u}_i$ reads: $\Delta \mathbf{u}_i = \Delta \mathbf{u}_{\mathrm{R},i} + \Delta \lambda_i \cdot \mathbf{u}_{\mathrm{T}}$

Displacement Control

Enforce displacement at a control-DOF: One less unknown!

Selection vector: $\mathbf{s} = \{0, 0, 0, 1, 0, 0, 0, 0, 0\}$

Displacement increment at control-DOF: $\mathbf{s}^{\mathrm{T}} \Delta \mathbf{u}_{i} = \mathbf{s}^{\mathrm{T}} \Delta \mathbf{u}_{\mathrm{R},i} + \Delta \lambda_{i} \cdot \mathbf{s}^{\mathrm{T}} \mathbf{u}_{\mathrm{T}}$

First iteration: $\mathbf{s}^{\mathrm{T}} \Delta \mathbf{u}_{i} = \mathbf{s}^{\mathrm{T}} \Delta \mathbf{u}_{\mathrm{R},i} + \Delta \lambda_{i} \cdot \mathbf{s}^{\mathrm{T}} \mathbf{u}_{\mathrm{T}} = \Delta u_{o}$

Solve for $\Delta \lambda_i$, remembering that $\Delta \mathbf{u}_{\mathbf{R},i}$ is zero at first iteration: $\Delta \lambda_i$

$$\Delta \lambda_1 = \frac{\Delta u_o}{\mathbf{s}^{\mathrm{T}} \mathbf{u}_{\mathrm{T}}}$$

Later iterations: $\mathbf{s}^{\mathrm{T}} \Delta \mathbf{u}_{i} = \mathbf{s}^{\mathrm{T}} \Delta \mathbf{u}_{\mathrm{R},i} + \Delta \lambda_{i} \cdot \mathbf{s}^{\mathrm{T}} \mathbf{u}_{\mathrm{T}} = 0$

Result:
$$\Delta \lambda_i = -\frac{\mathbf{s}^{\mathrm{T}} \Delta \mathbf{u}_{\mathrm{R},i}}{\mathbf{s}^{\mathrm{T}} \mathbf{u}_{\mathrm{T}}}$$

More lectures:

Terje's Toobox:

terje.civil.ubc.ca