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Green-Lagrange Strain 
In a document on continuum mechanics, posted near this one, the deformation gradient is 
employed to define the Green deformation tensor. That, in turn, is employed to define the 
Lagrange strain tensor, which in index notation reads 

 𝐸!" =
1
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The book by Crisfield and also the book by Hjelmstad, referenced at the end of this 
document, are excellent references on these matters. Eq. (1) is by far the most common 
vehicle for introducing geometric nonlinearity in structural analysis. It accommodates 
moderate but not large displacements and small but not infinitesimally small strains. An 
important application of Eq. (1) is truss and beam elements, which are “one-dimensional” 
elements stretching along the x-axis. In that case, the relevant axial strain from Eq. (1) is 
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because uz=w. The quantity (du/dx)2 is significantly smaller than the other terms in Eq. 
(2) and is usually omitted, leading to the following expression for the Green-Lagrange 
strain: 
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The first term in Eq. (3) is the well-known infinitesimal strain from basic structural 
analysis. It is the second term that is new; it shows how axial strain develops due to 
rotation, q=dw/dx, of the element. There are several other ways to derive that expression, 
addressed in the following sections. 

Geometry 
A transparent way to derive the Green-Lagrange strain in Eq. (3) is to consider the 
rotation of the infinitesimally short element in Figure 1. If there is no horizontal 
displacement of the element ends, only the vertical displacement shown, then the element 
elongates due to the rotation. That elongation is, from basic trigonometry 

 𝑑𝑢 ≈ 𝑑𝑥 − 𝑑𝑥 ⋅ cos(𝜃) (4) 

Next, a series expansion of cos(q) is considered:  

  (5) 

Neglecting higher order terms yields 
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which means that Eq. (4) reads 

  (7) 

Dividing through by dx yields 
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because q=dw/dx.  

 
Figure 1: Elongation of rotating truss element. 

Engineering Strain 
Another way to derive the Green-Lagrange strain is to use the original and deformed 
element length, visualized in Figure 2. The original element length is Lo and the deformed 
length is L. For structural engineers, the most intuitive strain expression is the 
engineering strain 

 𝜀( =
change	in	length
original	length =

𝐿 − 𝐿)
𝐿)

 (9) 

That expression can be used to derive the Green-Lagrange strain by letting the finite 
lengths L and Lo be interchanged with the infinitesimal quantities dx and dw, all 
visualized in Figure 2. This is done with the understanding that the infinitesimal portion 
of the strain, e=(L–Lo)/Lo=du/dx coming from pure extension, not rotation of the element, 
is taken care of separately. That said, the theorem of Pythagoras gives the deformed 
element length caused by rotation, i.e., lateral displacement dw: 

  (10) 

Employing the Taylor series approximation 

  (11) 

yields the sought Green-Lagrange strain: 
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  (12) 

 
Figure 2: Original and deformed element. 

Definition 
In an extension of the engineering strain in Eq. (9), the Green-Lagrange strain is actually 
defined as 
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That expression reveals that the Green-Lagrange strain essentially adds a second-order 
term to the engineering strain: 
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That is to say that the Green-Lagrange strain is defined as 
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Returning to Eq. (13), we can show that the portion of the axial strain coming from 
rotation of the element is indeed captured by that formula, using the theorem of 
Pythagoras in order to determine the element length: 
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Final Strain Expressions for Truss and Beam Elements 
For reference, the infinitesimal strain for a truss element is 
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and the infinitesimal strain for an Euler-Bernoulli beam element is 
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Introducing the new strain contribution, from rotation of the element, derived above, 
gives 
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for the truss element and 
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for the beam element. Those enhanced strain expressions can be used in hand calculations 
with energy methods and Ritz approximations, or in the principle of virtual displacements 
in order to derive finite elements with geometric nonlinearity.  
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