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Geometry and Trigonometry 
Dot Product: Length and Area 
Consider two vectors a, b . The dot product is  

  (1) 

where q is the angle between the vectors and ||a|| is the vector norm, i.e., the length of the 

vector, i.e., . If one of the vectors has unit length then the dot product 
reveals the length of the other vector in that direction. The dot product between two 
orthogonal (perpendicular) vectors is zero. The dot product is related to the area of the 
triangle that is spanned by the two vectors: 

  (2) 

Cross Product: Area 
The cross product, sometimes called the vector product, yields a vector: 

  (3) 

The norm of the cross-product vector is equal to twice the area of the triangle that is 
spanned by the two vectors: 

  (4) 

Consequently, the cross product between two parallel vectors yields a vector of zeros. 
Use the right hand to identify the direction of the cross product result relative to a and b:  

• Point the index finger straight forward and let it represent the direction of a 
• Bend the middle finger 90o to the index finger and let it represent the direction of 

b 
• The thumb is perpendicular to a and b and shows the direction of the cross 

product vector 
Observe that the cross product between two vectors that lie in the 1-2 plane is non-zero 
only in the 3-direction, with value a1b2-a2b1. Hence, the area of a triangle that lies in the 
1-2 plane is ½|a1b2-a2b1|, where a and b define two of the sides.  

Angle 
Angles are measured in radians (from 0 to 2p) or degrees (from 0o to 360o). An angle in 
radians is the ratio of the length of a circle segment to the radius of that circle: 

∈3

aib = aTb = a1b1 + a2b2 + a3b3 = a ⋅ b ⋅ cos(θ)

a = x1
2 + x2

2 + x3
2

A =
1
2
⋅ a ⋅ b ⋅ sin(θ)

a × b =
a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

⎧

⎨
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A =
1
2
⋅ a × b



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Geometry and Trigonometry Updated April 7, 2024 Page 2 

  (5) 

Note that in any triangle, the sum of the three corner angles is p=180o. In terms of a dot 
product, the following relationship holds: 
 𝐚 ∙ 𝐛 = |𝐚| ∙ |𝐛| ∙ cos(𝜃) (6) 

In terms of a cross product, the following relationship holds: 
 𝐚 × 𝐛 = |𝐚| ∙ |𝐛| ∙ sin(𝜃) (7) 

Trigonometry: Sine, Cosine, Tangent 
Trigonometry is a field within geometry devoted to the study of triangles. Consider a 
right-angled triangle, i.e., a triangle with one angle equal to 90o. Let q denote one of the 
other two angles and let the word Opposite identify the length of the side of the triangle 
that is opposite of that angle. Name the length of the longest side Hypotenuse. Finally, let 
Adjacent identify the length of the remaining side. The trigonometric functions are 
defined as 

  (8) 

  (9) 

  (10) 

Also defined is the cotangent: 

  (11) 

the secant: 

  (12) 

and the cosecant 

  (13) 

Pythagoras 
Pythagoras’ rule is valid for right-angled triangles and can be proven by rearranging a 
collection of such triangles in different ways, ultimately finding that 

  (14) 

where a and b are the lengths of the short sides while c is the length of the longest side.  

θ =
Arc length

Radius

cos(θ) = Adjacent
Hypotenuse

sin(θ) = Opposite
Hypotenuse

tan(θ) = sin(θ)
cos(θ)

=
Opposite
Adjacent

cot(θ) = Adjacent
Opposite

=
1

tan(θ)

sec(θ) = Hypotenuse
Adjacent

=
1

cos(θ)

  
csc(θ ) = Hypotenuse

Opposite
= 1

sin(θ )

  a2 + b2 = c2
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Law of Cosines 
The law of cosines is an extension of the rule of Pythagoras to triangles that are not right-
angled and states that 

  (15) 

where the “correction factor” 2abcos(g) compared with the rule of Pythagoras contains 
the angle g measured at the corner opposite the length c.  

Spherical Law of Cosines 
The spherical law of cosines is modified as follows when the triangle is laid on the 
surface of a sphere with unit radius:  
  (16) 

Because the sphere has unit radius the lengths a, b, and c are angles measured at the 
centre of the sphere. For non-unit spheres, a, b, and c should be thought of as those 
angles. When the triangle is right-angled then the angle g is 90 degrees and hence 
cos(g)=0 so that the spherical version of the rule of Pythagoras is obtained: 

  (17) 

Haversine: Great Circle Distance 
Due to historical developments in navigation, and also due to potential round off in 
calculations with the spherical law of cosines, the haversine formula is popular for 
calculating the “great-circle distance” between two points on a sphere given longitudes 
and latitudes. Using the notation from above the law of haversines states the spherical 
law of cosines: 
  (18) 

 
where the haversine function is 

  (19) 

The spherical law of cosines is recovered by also recalling that  
  (20) 

The law of haversines is specialized to the haversine formula for calculation of distances 
based on longitudes (l1, l2) and latitudes (j1, j2) by moving to the North Pole the point 
where g is measured. In fact, g is then the longitude separation between the two points 
whose distance, c, is sought, while a and b are the latitude from the North Pole down to 
those points. Because latitudes are measured from equator we have a=p/2–j1 so that 
sin(a) is replaced with cos(j1) in the application of the law of haversines. When further 
multiplying the angle c by the Earth’s radius r to get the sought distance d the haversine 
formula reads 

  a
2 + b2 − 2 ⋅a ⋅b ⋅cos(γ ) = c2

  cos(a) ⋅cos(b)+ sin(a) ⋅sin(b) ⋅cos(γ ) = cos(c)

  cos(a) ⋅cos(b) = cos(c)

  hav(a − b)+ sin(a) ⋅sin(b) ⋅hav(γ ) = hav(c)

 
hav(θ ) = sin2 θ

2
⎛
⎝⎜

⎞
⎠⎟
= 1− cos(θ )

2

  cos(a − b) = cos(a) ⋅cos(b)+ sin(a) ⋅sin(b)



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Geometry and Trigonometry Updated April 7, 2024 Page 4 

  (21) 

Using only the standard trigonometric functions the haversine formula can be solved in 
several ways, for example to calculate the distance between two points on Earth as 
follows: 

  (22) 

typically with r=6,371km.  

Points, Lines, Planes 
A point, say s, is a vector that contains the coordinates of the point. In the following, the 
vector x denotes a generic point with coordinates x1, x2, x3 or x, y, z. A direction, say d, is 
a vector that contains the relative length of the vector in each coordinate direction. A line 
is defined in terms of a point, a direction, and a scalar variable, here named t: 
  (23) 

A plane, i.e., a linear surface, is defined by 
  (24) 

The normal to the plane is n=Ñh={a b c}T. Hence, one way to construct a plane is to 
identify a normal vector, which directly gives a, b, and c, and use some reference point 
on the surface to determine d. Conversely, to construct a plane that intersects three points 
the cross product between the two identifiable vectors is computed, which gives the 
normal to the plane. Subsequently, any of the three points determine d. The potential 
point of intersection between two lines is obtained by equating two equations of the form 
in Eq. (23). The distance D from a point p to a line l can be found in two ways. First, 
denote by c the point on the line that is closest to p. The vector p-c must be perpendicular 
to the line l. Hence, the unknown line parameter, denoted t in Eq. (23) is solved from 

  (25) 

The alternative approach combines Eqs. (2) and (4). Consider the triangle between the 
points s, p, and c, and let q denote the angle at x0. It follows that 

  (26) 

The area of the triangle by Eqs. (2) and (4) is  

  (27) 

Combination of Eq. (26) and (27) provides the sought distance: 

  (28) 

The distance D from a point p to a plane h(x)=0 is 

  
hav

d
r

⎛
⎝⎜

⎞
⎠⎟
= hav(ϕ2 −ϕ1)+ cos(ϕ1) ⋅cos(ϕ2 ) ⋅hav(λ2 − λ1)

  d = r ⋅acos sin(ϕ1) ⋅sin(ϕ2 )+ cos(ϕ1) ⋅cos(ϕ2 ) ⋅cos(λ2 − λ1)( )

l = s + d ⋅ t

h(x) = a ⋅ x1 + b ⋅ x2 + c ⋅ x3 + d = 0

lT p − c( ) = 0

sin(θ) = Δ
p − s

A =
1
2
⋅ (p − s) × (c − s) =

1
2
⋅ p − s ⋅ c − s ⋅ sin(θ)

Δ =
(p − s) × (c − s)

c − s
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  (29) 

This formula is derived as follows. Consider a point q that lies in the plane h(x)=0, i.e., 
. The normal vector Ñh and the vector (p-q), the latter having 

length D, are parallel, i.e., cos(q)=±1 in the dot product between them. In fact, the dot 
product between these two vectors is evaluated in to ways suggested by Eq. (1): 

  (30) 

  (31) 

Equating Eqs. (30) and (31) yields Eq. (29).  

Rotation of a Coordinate System 
The rotation of a Cartesian coordinate system appears in several problems addressed in 
the notes on this website: 

• Rotation of the 2D y-z axis system of a cross-section if the original axes are not 
the principal axes 

• Transformation of element degrees of freedom from the “local” to the “global” 
configuration; both 2D and 3D coordinate systems are within scope 

• Rotation of the multi-dimensional axis system in the standard normal space of 
random variable in the second-order reliability method (SORM) 

It is noted in passing that the “rotation matrix,” R, employed in the rotation of coordinate 
systems is the transpose and at the same time inverse of the “transformation matrix,” T, 
employed in the contragredient transformation in matrix structural analysis when only 
displacement degrees of freedom are present: 

  (32) 

where the global coordinate system will be denoted  in the following, where the 
objective is to rotate coordinates from the x-system to the -system. Figure 1 is included 
to show that the sought rotation can be derived manually, at least in the 2D case. As 
shown in Figure 1 the result is: 

  (33) 

In other words, for 2D rotations, the coordinates of a rotated system is obtained from the 
equation  
  (34) 

where the rotation matrix is 

Δ =
h(p)
∇h

=
a ⋅ p1 + b ⋅ p2 + c ⋅ p3 + d

a2 + b2 + c2

a ⋅q1 + b ⋅q2 + c ⋅q3 + d = 0

∇hi p − q( ) = ∇h ⋅ Δ ⋅ ±1( )
(∇h)T (p − q) = a ⋅ (p1 − q1) + b ⋅ (p2 − q2 ) + c ⋅ (p3 − q3)

= a ⋅ p1 + b ⋅ p2 + c ⋅ p3 − a ⋅q1 + b ⋅q2 + c ⋅q3( )
= a ⋅ p1 + b ⋅ p2 + c ⋅ p3 − d

xglobal = Rxlocal      and     ulocal = Tuglobal      with     T = RT

x
x

x = x ⋅cos(θ )− y ⋅sin(θ )
y = x ⋅sin(θ )+ y ⋅cos(θ )

⇒ x
y

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

cos(θ ) −sin(θ )
sin(θ ) cos(θ )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= T = RT = R−1
! "### $###

x
y

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

x = Rx
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  (35) 

 
Figure 1: Manuel rotation for 2D coordinate system. 

To understand the 3D case, start by considering the orthonormal basis vectors e1, e2, and 
e3 of a coordinate system that is here nicknamed the “local” system. Furthermore, let n1, 
n2, and n3 be the orthonormal basis vectors of another coordinate system, here called the 
“global” system. In the two coordinate systems a vector v is written: 
  (36) 

where x, y, z, , , and  are constants. If the vector v starts at the origin then these 
constants are the coordinates of the other end of the vector. That is, x={x, y, z} are the 
coordinates in the local system and  are the coordinates of the same point 
in the global system. The rotation matrix transforms coordinates from the local to the 
global system: 
  (37) 

The rotation matrix, R, consists of direction cosines: 

R =
cos(θ ) sin(θ )
−sin(θ ) cos(θ )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x 

y

θ

x

y

θ

x = x − y ⋅ tan(θ )( ) ⋅cos(θ )
= x ⋅cos(θ )− y ⋅sin(θ )

θ

v = x ⋅ e1 + y ⋅ e2 + z ⋅ e3 = x ⋅n1 + y ⋅n2 + z ⋅n3
x y z

x = x ,  y,  z{ }

x = Rx



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Geometry and Trigonometry Updated April 7, 2024 Page 7 

  (38) 

where cij is the direction cosine between ni and ek, i.e., the dot product between those two 
basis vectors. One approach for establishing R in the context of a uniaxial structural 
element, such as a truss or beam element, is to start with the direction cosines of the 
element, namely 

  (39) 

where Dx, Dy, and Dz are the projections of the element along the x, y, and z axes, 
respectively. The vector consisting of these direction cosines forms the first column in R, 
whose columns consists of three orthogonal vectors, x, y, z: 

  (40) 

where x is a vector that contains the direction cosines of Eq. (39). The vectors y and z are 
expressed as the cross products 
  (41) 

  (42) 

where v is a user-defined vector that orients the local z-axis of the element in the global 
coordinate system. As an example, consider a frame element that, as usual, has the local 
x-axis along the element length. Suppose the end nodes of this element are positioned in 
the global coordinate system so that the element is oriented parallel to the global z-axis. 
Practically, this means that the element is a vertical column if the global z-axis defines 
the upward direction. To orient the local z-axis of the element along the global x-direction 
the vector v is given as {1 0 0}. Conversely, to orient the local z-axis along the global y-
direction the vector v is given as {0 1 0}. Given the element orientation it is impossible to 
orient the local z-axis along the global z-direction. When providing the vector v it is 
sufficient to give a direction in the global system that lies in the x-z-plane of the local 
element. That is, the vectors {1 0 0} and {1 0 0} would work fine even if the element is 
not oriented completely vertical in the global system. Importantly, however, all the 
vectors v, y, and z must have unit length; x is already normalized by its definition in 
terms of the direction cosines. As a practical interpretation of R, note that the vectors x, 
y, and z represent orthogonal vectors in the global coordinate system. For truss and frame 
elements the vector x is aligned with the longitudinal element axis, which is given by the 
direction cosines of the element. The y and z vectors rotate the element around the 
longitudinal axis by means of the auxiliary vector v. For example, to rotate a beam 
element about its local x-axis by an angle q, two rotation matrices can be applied. First, a 
rotation matrix with the following vector v is applied to rotate the cross-section around 
the x-axis by the angle q: 

x
y
z

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
=

c11 c12 c13
c21 c22 c23
c31 c32 c33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x
y
z

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

cx =
Δx
L

,    cy =
Δy
L

,    cz =
Δz
L

R = x y z⎡
⎣

⎤
⎦

y = v × x

z = x × y
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  (43) 

Next, the rotation matrix in Eq. (40) is applied, with a “standard” v that is always 
pointing in the global z-direction, unless the element is parallel to that axis, in which case 
v can be taken to point, say, in the global negative x-direction.  

v =
0

−sin(θ )
cos(θ )

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪


