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Geometric Nonlinearity 
The material presented in this document is brief, covering mostly the grand scheme of 
things. For details and perhaps more clarity, check the following material posted on this 
website:  

• Linearized theory 
o Document: Frame Elements with P-delta 
o Python code: G2 Element 6 

• Nonlinear theory 
o Document: Truss Element with Geometric Nonlinearity 
o Python code: G2 Element 3 

When loads are applied to a linear elastic structure, it deforms. That deformation may in 
turn cause additional forces and deformations in the structure. Those added effects, which 
are neglected in ordinary structural analysis, can be introduced in two different ways.  

Revised Equilibrium 
One approach is to consider equilibrium in a displaced configuration. That is done in the 
documents Beams with Axial Force and Frame Elements with P-Delta posted on this 
website. The result is a modified element stiffness, featuring a geometric stiffness 
contribution in addition to the ordinary elastic stiffness. The classical example is a 
“leaning column” with an axial force, P, which causes an overturning moment because of 
lateral displacement, D. That overturning moment is P×D and the inclusion of that effect 
reduces the lateral stiffness, when P is a compressive force. In general, the stiffness 
modification reads 

 [𝐊 − 𝑃 ∙ 𝐊!]𝐮 = 𝐅 (1) 

where K=elastic stiffness matrix and KG=geometric stiffness matrix. Eq. (1) shows that 
the total stiffness of the structure diminishes as the compressive axial force, P, increases. 
Eq. (1) also shows that the inclusion of P-Delta effects is still a linear problem, if P is 
constant. In other words, this is not geometric nonlinearity as explained in the next 
section. Rather, the inclusion of P-delta effects via equilibrium in the displaced 
configuration is a linearized theory, resulting in changed stiffness and the possibility of 
solving the eigenvalue problem that Eq. (1) represents when F=0. The eigenvalues are the 
buckling loads and the eigenvectors are the corresponding shapes of the structure for each 
buckling load. Three levels of granularity are possible when introducing P-Delta effects: 

• Big P-Delta: This is the leaning column effect associated with the geometric stiffness 
P/L. A simple stick model of a column with axial force reveals this effect. It is the 
largest P-Delta effect and in engineering practice it is the most important effect to 
include. 

• Small P-delta: This is the effect of the bending of the column and manifests in the 
components of the geometric stiffness matrix beyond P/L; see the document on Frame 
Elements with P-Delta.  
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• Tiny P-delta: This is the effect obtained by going beyond the document on Frame 
Elements with P-Delta, i.e., beyond the approximate polynomial shape functions, to 
the utilization of the exact stability functions. However, if this is done, equilibrium 
can no longer be written in the form of Eq. (1), removing the possibility of solving a 
classical eigenvalue problem for the buckling loads.  

Revised Kinematic Compatibility 
Another approach to introduce effects of deformations is to revise the kinematic 
compatibility considerations. That means modifying the strain expressions. Interestingly, 
there is no unique strain expressions when we leave the realm of infinitesimal strains. 
Rather a choice must be made, and that choice may depend on the behaviour of the 
material and the extent of the deformations. In order to introduce moderate but not large 
displacements, while assuming small but not infinitesimally small strains, the Green-
Lagrange strain is by far the most common choice. It is described in a separate document 
on this website and epitomized by the expression 
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which shows axial strain caused by rotation of an element. This is the fundamental 
vehicle for introducing geometric nonlinearity. Finite elements with that feature are 
developed by substituting the extended strain expression into the principle of virtual 
displacements.  

Coordinate System 
When new strain expressions are employed to include geometric nonlinearity, questions 
quickly emerge about the coordinate system in which those strains are expressed. 
Structural engineers are most familiar with the Lagrangian approach. That is a solid-
mechanics approach, in which the coordinate system remains fixed while the material 
moves within the coordinate system. In contrast, hydrotechnical engineers may be more 
familiar with the Eulerian approach, in which the coordinate system follows the material 
particle, e.g., fluid volume, as it moves. When developing finite elements with geometric 
nonlinearity, using the Green-Lagrange strain from the previous section, three options are 
available:  

• Total Lagrangian: The original coordinate system remains fixed.  
• Updated Lagrangian: The developments are made with reference to a coordinate 

system aligned with the previously converged equilibrium state of the element.   
• Corotational: The coordinate system moves with the element.   

Conservative vs. Unconservative Loads 
The loads applied to the structure are assumed to retain their loading direction, regardless 
of the amount of deformation. That is called conservative loads. So, far none of the 
documents on this website deals with anything else. For example, if the vertical load on a 
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vertical column remains vertical when the column deforms, then it is a conservative load. 
The more advanced case is unconservative, i.e., “follower loads” that change direction 
when the structure deforms. Those are harder to analyze, and renders the variational form 
of the boundary value problem unavailable.  
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