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Distributed Plasticity Elements 
Many of the notes posted on this website arrange equilibrium, compatibility, and material 
law as shown in Figure 1. The left-hand side contains equilibrium and the right-hand side 
contains compatibility equations. Figure 1 also adopts the following notation from other 
documents: u=degrees of freedom (DOFs); F=force/load vector; K=stiffness matrix; and 
T=transformation matrix. Also, following notation established in other documents, the 
nonlinear resisting (restoring) forces are identified by a tilde symbol: 𝐅". In the document 
on the computational stiffness method the element “configurations” Basic, Local, Global 
are explained; what is new in Figure 1 is the Section and Material levels. Those levels are 
vital in the nonlinear analysis with frame elements that is described in this document. 

 
Figure 1: Notation. 

State Determination 
The state determination in nonlinear analysis requires the determination of the resisting 
forces, and often the tangent stiffness, associated with the trial displacements at the 
structural level, uf. The global element displacements, ug, are determined without 
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transformation matrices, e.g., using the ID array described in the document on the 
computational stiffness method. Next, regardless of whether “displacement-based” or 
“force-based” elements are employed (described below) the basic deformations are 

  (1) 

where the transformation matrix is taken from the document on the computational stiffness 
method and given for a 2D element with Dx and Dy being the x- and y-distances between 
the end points. Having established the link between the basic and global element 
configurations, attention turns to the link between the cross-section and the basic 
configuration, i.e., moving further down Figure 1. It is the transformation between the basic 
and section degrees of freedom that differ between the displacement-based and force-based 
elements.  

Displacement Interpolation 
The “displacement-based element” of nonlinear analysis is based on the typical use of 
shape functions in finite element analysis, i.e., to discretize the displacement field. For 
example, for a beam element: 

  (2) 

where w=transversal displacement, x=longitudinal axis, N=shape functions, and 
ub=displacements and rotations along the degrees of freedom. For frame elements the shape 
functions in N are usually third-order polynomials. For the degrees of freedom shown in 
Figure 2 those functions are 

  (3) 

  (4) 

  (5) 

 
Figure 2: Basic degrees of freedom. 
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With those shape functions the section deformations are 

  (6) 

where e=axial strain and k=curvature corresponding to the section forces are Fs={N, M}. 
Evaluating Eq. (6) yields 

  (7) 

The behaviour of the material can be modelled as a cross-section model, in which case the 
state determination now has done what is needed for the material model to determine the 
section forces. However, in the following, it is assumed that a “fibre-discretized” cross-
section model is employed. That means the cross-section consists of a collection of uniaxial 
material models. Once the section deformations are determined, the strain in each fibre is 
obtained with the transformation: 

  (8) 

where z is the distance from the neutral axis to the fibre in which the stress is calculated. 
This is shown in the Python code for G2 posted on this website, implementing a fibre-
discretized cross-section. The state determination now proceeds to determine the Basic 
element forces. Once the material stresses are determined, the section forces are  
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When numerical integration is employed to integrate the section forces to get the basic 
forces, i.e., to evaluate  𝑭$) = ∫ 𝐓!)#  𝑭$!	𝑑𝑥

.
/ + 𝑭5), then integration points are usually given 

along an x-axis from –1 to 1. The relationship between x and x is x=(x+1)L/2,  

  (10) 

The displacement-based element is straightforward to implement. Its weakness is that the 
curvature varies linearly along the element. That is because curvature equals M(x)/EI. In 
light of Eq. (2) and the relationship M=EIw''(x), that curvature is linear. In reality, yielding 
is often localized near the member ends, causing nonlinearly increasing curvature towards 
the member ends. For this reason, a member must usually be discretized into several 
displacement-based elements to get accurate results.  
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Force Interpolation 
The force-based element remedies the problem with linearly varying curvature in the 
displacement-based element. Instead of saying something about the displacements, and 
satisfying equilibrium only in an average sense, equilibrium is now enforced. Instead of 
relying on the displacement relationship 

  (11) 

in the right-hand side of Figure 1, attention is given to the force relationship  
 𝐅"s=T$sb𝐅"b (12) 

which does not appear in Figure 1. That poses a problem in the state determination. A 
detour in Figure 1 is required to circumvent Eq. (11), i.e., to obtain section forces, Fs, for 
a given section deformations, us, which is the aim of the state determination. Figure 3 
shows that detour, which entails compatibility iterations in the element in order to 
determine the basic forces that correspond to the input trial displacements. For every such 
iteration, the element sends trial element forces to the cross-section, which performs 
equilibrium iterations in order to determine the section deformations that correspond to the 
input trial forces. For every such iteration, the section sends trial strain to the uniaxial 
material at each fibre, i.e., at each integration point of the cross-section. 
 

 
Figure 3: Iterations in a force-based element. 
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The matrix  in Eq. (12) is obtained by equilibrium: 

  

																			𝑭$𝒔 = 𝑻$𝒔𝒃𝑭$𝒃  ↔                 

 

(13) 
 

where N=axial force and M=bending moment along the element. Common to the 
displacement-based and forced-based elements is the transformation from the material-
level to the section-level, addressed earlier in this document.  

Berkeley Notation 
The finite element method has a long history at the University of California at Berkeley. 
Those pioneering efforts were continued in the development of nonlinear analysis. For that 
reason, a number of important publications employ the Berkeley-specific notation. That 
notation for nonlinear frame elements is summarized in Figure 4. Notice that the Local 
element configuration is omitted; the transformation matrix a links the Basic configuration 
with the Global element configuration. Also, notice that the symbol b is employed for the 
transformation matrix T$sb utilized earlier in this document for force-based elements.  

 
Figure 4: Berkeley notation for nonlinear frame elements. 
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