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Continuum Mechanics with 
Tensors 

In other documents posted near this one, equations are provided, often in Voight notation, 
for the three ingredients of boundary value problems in solid mechanics: kinematic 
compatibility, material law, and equilibrium. So, why the need for the present document? 
Because there exists an alternative language, of unparalleled beauty and generality, 
making extensive use of tensors and index notation, often labelled continuum mechanics. 
If you had trouble seeing applications when you learned about divergence, flux, gradient, 
etc. in vector calculus, then your need is here met. While the phrase Theory of Elasticity 
can be applied to the equations in the aforementioned documents, the label Continuum 
Mechanics is here used as code word for the use of tensor products, divergence theorems, 
and all that good stuff. There is substantial overlap in substance, but some of the 
language differs. Among the books of greatest value and pedagogical rigour in this field 
is the one by Keith Hjelmstad entitled Fundamentals of Structural Mechanics; two 
editions are now available. In line with the jargon of continuum mechanics, you will see 
that he employs the phrase Geometry of Deformation for kinematic compatibility, 
Constitutive Equations for material law, etc. Let’s dive into that world. 

Index Notation 
First, we refresh our knowledge of index notation, covered in the Math section of the 
Basics page. There are free and dummy indices. Consider the system of equations Ax=b, 
where A is a matrix, while x and b are vectors. In index notation, it is written Aijxj=bi. 
There are two ways to tell that i is a free index and that j is a dummy index, in this case. 
One way is to look at the right-side. It contains solely the vector b. The index i counts 
over the size of the vector; hence, i is a free index. However, the other way is general and 
much better: The index i appears only once in both terms of the equation; hence, it is a 
free index. This rule stems from the fact that summation is implied over repeated indices: 
Aijxj should be read ∑ 𝐴!"𝑥"#

"$% , making j a dummy index.  

Tensors 
A vector is a one-dimensional tensor; a matrix is a two-dimensional tensor. This means 
that the concept of a tensor is most general. In the same way that we recognize bi as a 
vector and Aij as a matrix, we recognize Cijk as a third-order tensor, Cijkl as a fourth-order 
tensor, etc., here arbitrarily named C. Often, the indices of a tensor count over the 
number of geometry axes of the problem. In basic mechanics, the axes of a 3D problem 
are labelled x, y, and z. In general, we label them 1, 2, and 3, implying that each index can 
take the value 1, 2, and 3. Many tensors “live” in such coordinate systems, which is 
highlighted by introducing the “base vectors” of the coordinate system: e1={1, 0, 0}, 
e2={0, 1, 0}, e3={0, 0, 1}. This means the base vectors are parallel to their respective axis 
direction. The “tensor product” eiÄej is the dyadic product of the two vectors, meaning 
that it creates a matrix containing all possible products between the components of ei and 
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ej. Using that definition, the components of a tensor can be given meaning by relating 
them to the base vectors: 

 𝐀 =##𝐴!"[𝐞!⨂𝐞!]
#

"$%

#

!$%

 (1) 

As Hjelmstad says in his book: A tensor does not depend upon the coordinate system, but 
its components do. Another way to express the same thing is Aij=ei(Aej), with inner 
products implied.   

Kinematic Compatibility 
The objective of kinematic compatibility equations is to express strains in terms of 
displacements. Surprisingly, there exists no unique way of expressing strain. It is 
instructive to start with a uniaxial member of original length Lo, with new length L after 
deformation. The concept of “stretch” is defined by  

 𝜆 =
𝐿
𝐿&

 (2) 

Conversely, the engineering strain is “change in length” over “original length:” 

 𝜀 =
𝐿 − 𝐿&
𝐿&

 (3) 

which means that e =l–1. Yet another strain measure for this basic case is the Lagrangian 
strain, which is similar to the engineering strain, but using squared lengths: 

 𝐸 =
1
20
𝐿' − 𝐿&'

𝐿&'
1 (4) 

The reason for the factor ½ is that it makes E approach e for small strains, because 
E=½(l2–1)=½(l–1)(l+1), and that last parenthesis is close to 2 for small strains, i.e., 
when l is close to unity. In contrast to the Lagrange strain, the Eulerian strain, not spelled 
out here, employs L instead of Lo in the denominator. The Lagrange strain is central in the 
solid mechanics of continuum mechanics, in which the displacements of any point within 
the structural member are described by a “deformation map.” That map, denoted by the 
symbol f, tells where a point located at X in the undeformed body is found at location x 
in the deformed body: 

 𝒙 = 𝜙(𝐗) (5) 
In the second edition of his book, Hjelmstad switched to z and x for the point in the 
undeformed and deformed body, respectively, instead of X and x, which is maintained 
here. That book contains a pedagogically appealing explanation of how the unit-length 
tangent vector dX/ds to a line denoted by s becomes the tangent vector dx/ds to the 
deformed line. The chain rule of differentiation yields 

 𝑑𝐱
𝑑𝑠 =

𝑑𝐱
𝑑𝐗 ∙

𝑑𝐗
𝑑𝑠 ≡ 𝐅 ∙

𝑑𝐗
𝑑𝑠  (6) 
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where the “deformation gradient tensor” F=dx/dX is defined. In the literature, Eq. (6) is 
often written simply dx=FdX. The tangent vector dx/ds no longer has unit length; by 
calculating its deformed length we have the stretch:  

 𝜆 = =
𝑑𝐱
𝑑𝑠= =

>𝑑𝐱
𝑑𝑠 ∙

𝑑𝐱
𝑑𝑠 (7) 

In structural engineering it is common to work with the displacements u(X)={u, v, 
w}= f(X) – X instead of x, where u must not be confused with the vector of degrees of 
freedom appearing elsewhere on this website. The deformation map is then 
f(X)=X+u(X) and, as a result, the deformation gradient tensor reads 

 𝐅 = 𝐈 + ∇𝐮 = 𝛿!" + 𝑢!," (8) 

where d is Dirac’s delta and ui,j means dui/dXj. The deformation gradient tensor, F, 
contains information about axial and shear strain at point X. In fact, the stretch is 
obtained from it by substituting Eq. (6) into Eq. (7), now denoting dX/ds by n in order to 
highlight that it can be any unit vector in the undeformed configuration:  

 𝜆 = E(𝐅 ∙ 𝐧) ∙ (𝐅 ∙ 𝐧) = E𝐧 ∙ 𝐅)𝐅	𝐧	 (9) 

That is a justification for why the “Green deformation tensor” is defined as  

 𝐂 = 𝐅)𝐅 (10) 

In order to produce a strain tensor, Eq. (9) rewritten in terms of the definition in Eq. (10) 
is substituted into the previously stated expression for Lagrange strain, i.e., E=½(l2–1): 

 𝐸 =
1
2
(𝐧 ∙ 𝐂𝐧 − 1) ≡ 𝐧 ∙ 𝐄𝐧 (11) 

where the Lagrangian strain tensor is defined: 

 𝐄 =
1
2
[𝐂 − 𝐈] (12) 

Substitution of Eqs. (10) and (8) into Eq. (12) and switching to index notation yields 

 𝐸!" =
1
2 J𝑢!," + 𝑢",! + 𝑢*,!𝑢*,"K 

(13) 

That expression is employed in the document entitled Green-Lagrange Strain, posted near 
this one.  
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