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Concentrated Plasticity Elements 
The objective in this document is to explain nonlinear frame elements with concentrated 
plastic hinges at the element ends. These elements contrast with the distributed plasticity 
elements that are labelled Element 12 (displacement-based) and Element 13 (force-based) 
in the G2 implementations on this website, covered in another document. As explained 
by Filippou and Fenves in their 2004 chapter in Bozorgnia and Bertero’s book Methods 
of Analysis for Earthquake-Resistant Structures, there are several ways of formulating 
concentrated plasticity elements. The categorization of approaches adopted in this 
document is visualized in Figure 1, with element numbering from G2. Each element type 
is given on section in the following. 

 
Figure 1: Concentrated plasticity elements. 

Element 7: Elastic Perfectly Plastic 
This element, shown at the top of Figure 1, has a linear elastic interior, with perfectly 
plastic hinges forming at the element ends. This means that the bending stiffness at an 
element end disappears once yielding takes place there. This also means that the structure 
becomes unstable, with zero stiffness along a mechanism, once a sufficient number of 
hinges have formed. In other words, there is no hardening. As for any element, the state 
determination starts with trial global displacements, ug, given to the element from the 
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Newton-Raphson algorithm, straightforwardly transformed into basic deformations, ub, 
by the kinematic compatibility relationship ub=Tbgug. Next, the state determination 
proceeds to the possibility that there is no yielding, in which case the basic forces are 

 𝐅! = 𝐊!,#$%&'()𝐮! (1) 

where 

 𝐊!,#$%&'() = %

4𝐸𝐼
𝐿

2𝐸𝐼
𝐿

2𝐸𝐼
𝐿

4𝐸𝐼
𝐿

+ (2) 

That stiffness matrix is usually amended with an extra row and an extra column, 
containing the axial stiffness EA/L on the diagonal. To assist the explanations, the two 
end moments in the vector Fb are denoted by Mleft and Mright. Those moments are 
compared with the yield moment, Mu, given by the user. In contrast with the fibre-
discretized distributed plasticity elements, the user should employ an axial-moment 
interaction diagram when determining Mu. That typically entails conducting a single 
initial linear elastic analysis of the structure in order to determine axial forces in the 
relevant members. That is followed by the reading of Mu from the interaction diagram for 
the determined axial force value. The comparison of moment values with Mu proceeds as 
follows: If the absolute value of Mleft is greater than the absolute value of Mright and also 
greater than Mu then there is yielding at the left end, at the very least. If there is yielding 
only there, then the stiffness after yielding is, by static condensation, 

 𝐊!,*(#$+	$#-' = ,
0 0

0
3𝐸𝐼
𝐿
/ (3) 

In order to determine the element forces in that case, consider Figure 2. The quantity hleft 
is called an “event factor” and defined as the ratio Mu/Mleft, i.e., a number less than unity. 
Because the moment at yielding is hleftMleft, the displacement at yielding is hleftu, where u 
is the trial displacements given by the Newton-Rapshon algorithm.  

 
Figure 2: First event factor, at left-hand side yielding. 
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Up to yielding, the stiffness is given by Eq. (2); after yielding the stiffness is given by Eq. 
(3). Those two response regimes are captured by the following calculation of the element 
forces:  

 𝐅! = 𝜂$#-' ⋅ %
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The absolute value of the moment Mright in that force vector is now compared with Mu. If 
Mright is larger, then there is yielding also on the right-hand side. In that case, an event 
factor is again calculated. However, care must be exercised in order to get hright right. 
Consider Figure 3, which shows with a black solid dot the moved origin of the moment-
rotation plane. In other words, the point at which yielding occurred on the left-hand side 
is now considered the starting point for the second-slope 3EI/L stiffness. To that end, the 
second event factor is 

 𝜂.(/0' =
𝑀1 −𝑀.(/0'	20#3	$#-'	*(#$+#+

𝑀.(/0' −𝑀.(/0'	20#3	$#-'	*(#$+#+
 (5) 

 
Figure 3: Second event factor, at right-hand side yielding. 

The basic forces are then 
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where the last term is included here, although the bending stiffness is zero after the last 
yielding, because the stiffness matrix may include a non-zero axial stiffness term. If the 
if-statement at the beginning of these explanations revealed that the absolute value of 
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Mright is greater than the absolute value of Mleft, and also greater than Mu, then the 
stiffness in the response regime that follows yielding is 

 𝐊!,*(#$+	.(/0' = ,
3𝐸𝐼
𝐿 0
0 0

/ (7) 

If there is no yielding at all, then it is simply Eqs. (1) and (2) that are returned from the 
state determination. The state determination here works for “total displacement” 
situations without cyclic loading. To accommodate cyclic loading, it is necessary to 
commit the element state upon convergence of the Newton-Raphson iterations, and 
working with incremental displacements instead of the total displacement.  

Element 8: Two-component Parallel System 
Another way of formulating an element with concentrated hinges is to consider the 
degrees of freedom (DOFs) at the element ends to be connected in parallel to the DOFs of 
the internal components. This approach is schematically shown in Figure 4. At the top of 
the figure is a generic set of springs to explain the following tenets of any parallel system:  

• The system displacement equals the component displacements: u = u1 = u2 
• The system force is the sum of the component forces: F = F1 + F2 
• The system stiffness is the sum of the component stiffnesses:  

F = F1 + F2 = K1u1 + K2u2 = (K1 + K2) u 

 
Figure 4: Parallel system. 

The actual two-component parallel system model for the element with concentrated 
hinges is shown at the bottom of Figure 4. The two solid black lines represent two sub-
components. The top sub-component is simply linear elastic. The bottom sub-component 
is also linear elastic in the interior, but the ends follow an elasto-plastic material law. 
That means they go into yielding once the rotation is sufficiently high. The moment-
rotation relationships at either end of those two sub-components are shown in Figure 5, 
where a is the hardening parameter. For the combined moment-relationship at the top of 
the figure to be true, the following two conditions apply: 1) The stiffness of the 
Component 1 must be a times the elastic stiffness; 2) The initial stiffness of Component 
2 must be (1–a) times the elastic stiffness.  
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Figure 5: Moment-rotation relationships for parallel model. 

With those material models, the force-deformation relationship, Fb=Kbub, for the two-
component element in Figure 4, is obtained by adding stiffness matrices. Four cases must 
be formulated, in order to cover all possible states of yielding. In the equations below, the 
stiffness contribution from Component 1 is consistently written first. First, the case of no 
yielding at either end of Component 2:  
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Second, the case of yielding at the left-hand end of Component 2: 

 𝐅4 = 8𝛼 %
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Third, the case of yielding at the right-hand end of Component 2: 

 𝐅4 = 8𝛼 %
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Fourth, the case of yielding at both ends of Component 2: 

 𝐅4 = 8𝛼 %
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Suppose the yield moment, My, is known. Then the following statements are reflected in 
the G2 code for Element 8, posted on this website: The stiffness of the elastic element 
(Component 1) must be a My/qy. The initial stiffness of the elasto-plastic element 
(Component 2) must be (1–a) My/qy. The elasto-plastic element (Component 2) must 
yield at moment (1–a) My. 

Element 9: One-component Series System 
In the series system approach for formulating an element with concentrated yielding, one 
can identify three components, as illustrated in Figure 6:  

• Left-hand side concentrated moment-rotation spring (Component 1) 
• Elastic interior beam element (Component 2) 
• Right-hand side concentrated moment-rotation spring (Component 3) 

 
Figure 6: Series system. 

At the top of that figure is a generic set of springs to explain the following tenets of any 
series system:  

• The system force equals the component forces: F = F1 = F2 = F3 
• The system displacement is the sum of the component displacements: u=u1+u2+u3 
• The system flexibility is the sum of the component flexibilities:  

u = u1 + u2 + u3 = f1F1 + f2F2 + f3F3 = (f1 + f2 + f3) F 
As a result, the formulation of force-deformation relationships in this approach implies 
adding flexibility matrices, instead of stiffness matrices as above. The result is a two-by-
two flexibility matrix, but it can be established by considering four component degrees of 
freedom:  

1. Moment/rotation in left-hand side spring 
2. Moment/rotation at left end of elastic beam element 
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3. Moment/rotation at right end of elastic beam element 
4. Moment/rotation in right-hand side spring 

The flexibility matrix for those four DOFs is 

 𝐟5 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑓6789 0 0 0

0
𝐿
3𝐸𝐼 −

𝐿
6𝐸𝐼 0

0 −
𝐿
6𝐸𝐼

𝐿
3𝐸𝐼 0

0 0 0 𝑓:;<=9⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (12) 

where fleft=flexibility of the left-hand side spring and fright=flexibility of the right-hand 
side spring. The equilibrium matrix 𝐓E, i.e., the counterpart to the kinematic matrix T, but 
for equilibrium, connects the four component forces to the two basic element forces: 

 𝐅F5 = 𝐓E54𝐅F4 = %

1 0
1 0
0 1
0 1

+ 𝐅F4 (13) 

where Fc are the four component forces listed above. The flexibility matrix for the “final 
basic configuration” is then 

 𝐟4 = 𝐓E54> 𝐟5𝐓E54 = %

𝐿
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The inverse of fb when fleft=fright=0 is the ordinary Basic stiffness matrix with 4EI/L on the 
diagonal and 2EI/L on the off-diagonal; otherwise, it contains slightly more complex 
expressions.  

State Determination for “Force-based” Element 
The state determination for Element 9 is conceptually similar to the state determination 
for the distributed plasticity element labelled Element 13 in the Python code G2 posted 
on this website. Both are “force-based elements,” epitomized in the relationship 𝐅F) =
𝐓E)!𝐅F! in Eq. (13) and equivalently in the relationship 𝐅F&?.(3/& = 𝐓E&?.(3/&@!%&()𝐅F!%&(), 
which gives the force in the springs from the Basic element forces. This relationship does 
not appear in the displacement-based stiffness methods, where the transformation 
matrices always express “deformations below are equal to the transformation matrix 
times the deformations above” and in that paradigm, as a result: “forces above are equal 
to the transformation matrix transposed times the forces below.” In force-based elements, 
where the flexibility matrix will appear, matters are exactly opposite: “forces below are 
equal to the transformation matrix (the one with a tilde) times the forces above” and as a 
result: “deformations above are equal to the transformation matrix (the one with a tilde) 
transposed times the deformations below.” This force-based state determination, in the 
face of a top-level Newton-Raphson algorithm that is conducting equilibrium iterations 
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for a standard displacement-based finite element code, is illustrated in Figure 7. Because 
of the force-based approach inherent in the series system implementation of Element 9, 
we cannot go downwards on the right-hand side. Instead, we must go downwards on the 
left-hand side, i.e., the equilibrium side. For nonlinear material models, this requires 
iterations, as is described also in the document on distributed plasticity elements for 
Element 13. With reference to Figure 7, compatibility iterations take place at the element 
level in order to determine the forces 𝐅F! that satisfy the following compatibility 
equations:  

 𝐮!
(3?A' − 𝐮!G𝐅F!H = 𝟎 (15) 

For every compatibility iteration, the following force transformation is employed in order 
to determine the force in the springs: 

 𝐅F&?.(3/& = 𝐓E&?.(3/&@B%&()𝐅F! (16) 

Once the spring receives that force, equilibrium iterations take place in the springs in 
order to determine the deformations 𝐮&?.(3/& that satisfy the following equilibrium 
equations: 

 𝐅F&?.(3/&
(3?A' − 𝐅F&?.(3/&G𝐮&?.(3/&H = 𝟎 (17) 

For every equilibrium iteration, the spring deformations are sent to the material model for 
the springs, if they are modelled by a dedicated material model. See Element 9 in the G2 
code posted on this website for further details on the implementation.  

 
Figure 7: State determination for series system model. 
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Figure 8: Summation of flexibilities in series system model. 

At present, Element 9 is implemented in G2 with a bilinear uniaxial material model as 
springs. Another, perhaps simpler option, would be to introduce a constant spring 
flexibility, with hardening parameter denoted by a, as earlier in this document. This 
model is illustrated in Figure 8, leading to the following algorithm for the compatibility 
iterations, without equilibrium iterations:  
1. Define flexibility matrices: 
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2. Initialize element forces, Fb 
3. Start Newton-Raphson iterations to enforce the compatibility in the top-most oval in 

Figure 7 
a. Let the residual element deformations be the total element deformations 
b. Check if any of the springs are yielding for the current value of Fb 
c. Calculate the corresponding deformations, ub, not by equilibrium iterations, as 

is done in Element 9b and Element 13 in G2, but by: 

𝐮! = 𝐟#$%&'()𝐅!,M + 𝐟!,?$%&'()	H𝐅!,H + 𝐟!,H𝐅! 

where Fb,i are the portions of the element forces up to first yielding, then 
up to second yielding, etc.  
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d. Calculate the flexibility matrix for incremental force changes at the current 
state; for example, after yielding of spring 1, 𝐟! = 𝐟#$%&'() + 𝐟!,?$%&'()	H 

e. Subtract ub from the residual deformations in item a. above 
f. Check the norm of the deformation residual; if it is not zero then add 

𝐟!@H𝒖!,.#&(+A%$ to Fb and go back to item a. above 
4. After convergence, the element forces to be returned to the top-level Newton-

Raphson algorithm is Fb and the corresponding stiffness is 𝐟!@H. 

A drawback of that implementation is that, for cyclic loading, the force-displacement 
curve appears as shown on the left-hand side of Figure 9. In other words, the above 
modelling of the plastic response is not hysteretic. This is rectified in the present 
implementation of Element 9 in G2, posted on this website, where a uniaxial material 
models the moment-rotation relationship of each hinge. The right-hand side in Figure 9 
shows how that leads to a proper hysteretic response, here with kinematic hardening 
demonstrated for a portal frame subjected to lateral load.  

 
Figure 9: Cyclic response from with different implementations of Element 9. 

Element 10: Rigid Interior 
Suppose the interior of the element remains rigid, like a stick model, with all deformation 
concentrated in the end springs. In that case, a uniaxial material model can be employed 
to model the moment-rotation relationship in each hinge. The state determination starts 
with the determination of end rotations:  

 𝐮4 = 𝐓4<𝐮< (18) 

Thereafter, the moment for the given rotation is determined by each uniaxial material 
model. Finally, the end forces are passed back up to the Newton-Raphson algorithm: 

 𝐅F< = 𝐓4<> 𝐅F4 (19) 

The simplicity of this approach stems from the fact that the interior of the element 
remains rigid. This is implemented as Element 10 in the G2 code posted on this website.  
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Calibration of Springs 
An important task in the adaptation of concentrated plasticity elements is to calibrate the 
material law of the springs at the element ends. A natural starting point is computational 
analysis of the cross-section. Specifically, moment-curvature diagrams are obtained by 
applying section deformations and observing the evolution of the bending moment. An 
idealized version of such results is shown at the top of Figure 10. A bi-linear moment-
curvature relationship is postulated here, with initial stiffness EI and second-slope 
stiffness aEI. The question is: What is the corresponding moment-rotation relationship? 
We seek the yield rotation, the initial stiffness, and the second-slope stiffness of the blue 
curve at the bottom of Figure 10. 

 
Figure 10: Curvature vs. rotation.  

In order to address the aforementioned questions, consider Figure 11. It shows an anti-
symmetric bending moment diagram applied to a member in its Basic configuration. 
Adopting this variation in the bending moment along the element is appropriate when we 
think of having one element per member. Conversely, a constant (symmetric) bending 
moment diagram would be appropriate if we think of discretizing the member into many 
elements. In the top half of Figure 11, end moments equal to the yield moment of the 
cross-section, My, are applied to the member. The structure remains linear elastic; hence, 
the curvature is just reaching the yield curvature, ky, at the member ends. Quick 
integration with the principle of virtual forces, from elementary structural analysis, 
suggests that the end rotations are q=MyL/6EI in this situation. In other words, the initial 
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slope of the blue line at the bottom of Figure 10 is 6EI/L. Next, the end moments are 
increased to lMy, with l simply serving as a load factor, with value greater than unity. 
The bottom portion of Figure 11 illustrates the distribution of curvature along the 
member in this situation. Because the bending moment values near the member ends 
exceed My, there is concentrated curvature there, as illustrated in Figure 11 and resulting 
from the moment-curvature diagram in Figure 10. Integration of curvature equals 
rotation. That is why the area of the “protruding” plastic curvature is the plastic rotation, 
as indicated in Figure 11.  

 
Figure 11: Determination of plastic rotation. 

 
In order to determine the plastic rotation, the curvature is expressed as a function of the 
bending moment, here for the elastic region:  
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and here for the plastic region, in which M>My and l>1:  
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 𝑀(𝑥) = 𝜆𝑀N
𝑥

(𝐿/2) (22) 

Equating M(x) with My gives the location where the bending moment reaches yield: 

 𝑥 =
𝐿
2𝜆 (23) 

That means the plastic hinge length is 

 𝐿O =
𝐿
2 −

𝐿
2𝜆 =

𝐿
2 ⋅ U1 −

1
𝜆V (24) 

Eq. (24) correctly suggests that the plastic hinge length is zero when l=1. Eq. (24) also 
shows that the plastic hinge length increases as l increases, naturally with limiting value 
L/2, which means yielding along the entire member. Next, the expression for the bending 
moment from Eq. (22) is substituted into the expression of the variation of curvature 
along the member in the plastic region from Eq. (21), which gives 

 𝜅(𝑥) =
𝑀N

𝐸𝐼 +
𝑀N ⋅ W

2𝜆𝑥
𝐿 − 1X

𝛼 ⋅ 𝐸𝐼  (25) 

The plastic rotation is the area outside the elastic curvature, i.e., the area of the 
“protruding” plastic curvature triangle at the bottom of Figure 11. The height of that 
triangle is obtained by evaluating Eq. (25) at x=L/2 and ignoring the first term, which 
gives  

 𝜅O,#3+ =
𝑀N ⋅ (𝜆 − 1)

𝛼 ⋅ 𝐸𝐼  (26) 

The length of the aforementioned triangle is the plastic hinge length, Lp. The area of the 
triangle is the plastic rotation: 

 𝜃O =
𝑀N ⋅ 𝐿
4 ⋅ 𝛼𝐸𝐼 ⋅

(𝜆 − 1)L

𝜆  (27) 

Eq. (27) correctly suggests that the plastic hinge rotation is zero when l=1 and that the 
plastic rotation increases in value as l increases. Because of the presence of l, Eq. (27) 
also gives the second-slope stiffness of the blue line in Figure 10, in the sense that the end 
moments are defined by l and My. However, the blue line in Figure 10 is linear, while 
Eq. (27) is nonlinear. As is understood from earlier, a bi-linear moment-rotation 
relationship is sought in this document. One approach to achieve this is to evaluate qp in 
Eq. (27) for two l-values and draw a line between. The slope of that line is then the 
inverse of the sought l-q slope. That approach is adopted here by letting the first l-value 
be unity, giving, qp=0, and the second simply set equal to l. The slope of the rotation-
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moment relationship is then the difference between the two plastic rotations, divided by 
the interval in between, which is l–1: 

 
1
𝑘O

=
𝜃O(𝜆)
𝜆 − 1 =

𝑀N ⋅ 𝐿
4 ⋅ 𝛼𝐸𝐼 ⋅

𝜆 − 1
𝜆  (28) 

The second column in Table 1 shows the value of the multiplier l/(l–1) that gives kp in 
the relationship M=kpqp, with kp=multiplier×4aEI/(MyL), for different values of l. It 
shows that the plastic portion of the second-slope stiffness of the blue line in Figure 10 
diminishes with increasing reference value of l. In fact, the large multiplier values that 
appear for small l-values indicates a high plastic portion of the second-slope stiffness 
immediately after yielding. Conversely, when the reference end moments reach twice the 
yield moment, then the plastic portion of the second-slope moment-rotation stiffness is 
8aEI/(MyL). The third column in Table 1 shows the plastic hinge length, calculated from 
Eq. (24).  
 
Table 1: Second-slope stiffness of the moment-rotation relationship from reference moment.  

 

l Multiplier of  
!⋅#$%
&!⋅'

 to obtain kp 
Plastic hinge length, Lp, as fraction 

of total member length, L 

1.05 21.00 0.024 
1.1 11.00 0.045 
1.15 7.67 0.065 
1.2 6.00 0.083 
1.25 5.00 0.100 
1.3 4.33 0.115 
1.35 3.86 0.130 
1.4 3.50 0.143 
1.45 3.22 0.155 
1.5 3.00 0.167 
1.55 2.82 0.177 
1.6 2.67 0.188 
1.65 2.54 0.197 
1.7 2.43 0.206 
1.75 2.33 0.214 
1.8 2.25 0.222 
1.85 2.18 0.230 
1.9 2.11 0.237 
1.95 2.05 0.244 

2 2.00 0.250 
 


