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Beams on Elastic Foundation 
Beams on elastic foundation, such as that in Figure 1, appear in building foundations, 
floating structures, beams that rest on a grid of perpendicular beams, and elsewhere. It 
also turns out that the governing differential equation is similar to that of cylindrical 
shells and tapered beams with curved webs. As a result, this material has quite broad 
applicability. However, it is important to exercise caution when applying this theory to 
problems where the foundation does not behave in a linear fashion, such as soils that 
respond nonlinearly to pressure or ships whose waterline area changes with sinkage. 
In this document the beam is assumed to be an ordinary Euler-Bernoulli beam, thus the 
theory from that document carries over to this one. Accordingly, downwards distributed 
load on the beam is referred to as q, while it is denoted qz when it acts in the opposite 
direction, i.e., in the z-direction. 

 
Figure 1: Beam on elastic foundation. 

Foundation Stiffness 
The foundation stiffness, ks, which is illustrated in Figure 1, is conceptually 
straightforward. When the beam displaces downwards, the foundation exerts an upwards 
force, illustrated by the springs in Figure 1. ks has units of force per unit length along the 
beam. Another stiffness, denoted kf, is also present, relating to rotation f of the beam 
cross-section around the longitudinal axis of the beam. In other words, kf provides 
resistance against torsion of the beam. Techniques to determine ks and kf are described in 
the following subsections for different situations. 

Stiffness from Buoyancy 
An important application of this theory is floating structures. To determine ks for a beam 
that floats in water, suppose the beam cross-section has width equal to b at the location 
where the cross-section penetrates the water surface. Furthermore, let the mass density of 
water be denoted rw, which typically equals 1,025kg/m3 for seawater, and let g denoted 
the acceleration of gravity. For an infinitesimal beam length, dx, the change in buoyancy 
force due to a vertical displacement D equals the weight of the displaced water, namely 
weight density multiplied by volume: 

  (1) 

As a result, the stiffness that resists the displacement D, per unit length of the beam, is 
obtained by dividing B by dx and D: 

q 
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 B = ρw ⋅ g( ) ⋅ b ⋅dx ⋅ Δ( )
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  (2) 

which has unit force per unit length squared. The evaluation of ks according to Eq. (2) is 
correct as long as the beam width at the waterline does not change. Unfortunately, this 
condition is not always satisfied, which is understood from Figure 2. While the 
rectangular beam-cross-section maintains width b regardless of the vertical displacement, 
the value of b for the circular cross-section varies with the heave motion. As a result, ks is 
a function of D for the circular cross-section, which introduces nonlinearity that is 
neglected in the subsequent equations.  

 
Figure 2: Heave and roll motion of floating beams. 

The fact that the waterline area is only a proxy for displaced water volume becomes even 
more apparent when determining kf. To understand this, first consider the classical 
approach for determining kf. When the rectangular beam-cross-section in Figure 2 rotates 
counterclockwise as indicated by dashed lines, more water is displaced on the left side 
and less water is displaced on the right side. As a result, buoyancy forces act against the 
rotation, giving rise to kf. By computing the volumes of the shaded triangles in Figure 2 
the resultant buoyancy force, on either side, is  

  (3) 

The distance between the force pair, i.e., the buoyancy forces from each of the shaded 
triangles in Figure 2 is 2/3 of b. Thus, the moment from buoyancy that resists the rotation 
is 

  (4) 

As a result, the stiffness that resists the rotation f, per unit length of the beam, is obtained 
by dividing T by dx and f: 

  (5) 

where it is observed that the moment of inertia of the waterline area. Again it is observed 
that the derivations do not hold for the circular cross-section in Figure 2. In fact, it is 
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easily seen that cross-section has zero resistance against rotation. If not easily seen, it is 
easily felt when trying to balance on a floating timber log. The problem with applying 
Eq. (5) to the circular cross-section is the use of movement of the beam at the waterline 
as a proxy for displaced water volume. Thus, while Eq. (5) is commonly used, it is 
important to be aware of its limitations.  

Stiffness from Soil 
Suppose the stiffness, ks, is determined from soil testing. In particular, suppose a vertical 
load, P, is placed on an area with dimensions x and y, and that the vertical displacement, 
D, is measured. The relationship between the distributed load and the displacement is 
written in terms of a distributed stiffness, kd: 

  (6) 

While kd is stiffness per unit area, ks is stiffness per unit length. The sought value is 
obtained by multiplying kd by the beam width, b: 

  (7) 

If one assumes that the foundation material is linear elastic, there is no unique 
relationship between the Young’s modulus, E, of the foundation material and the stiffness 
ks. However, if one imagines that the soil underneath the beam is linear elastic with depth 
L to bedrock then the force-deformation relationship of the soil is 

  (8) 

where A=x.y is the area loaded by P. Writing Eq. (8) in the form of Eq. (6) yields 

  (9) 

and the sought stiffness is, in accordance with Eq. (7): 

  (10) 

Stiffness from Girder Grid 
Another situation appears when the beam is resting on a grid of closely spaced 
perpendicular beams, e.g. joists. Suppose the joists are spaced at x on centre and that their 
stiffness against vertical deflection at the point of intersection with the beam is kb[N/m]. 
Then the sought stiffness is: 

  (11) 
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Stiffness from Cylindrical Shell Wall 
The document on cylindrical shells, posted on this website ends up with a differential 
equation of the form 

 𝐸𝐼
1 − 𝜈! ⋅

𝑑"𝑤
𝑑𝑥" +

𝐸 ⋅ 𝑡
𝑟! ⋅ 𝑤 = 𝑝 (12) 

where t=wall thickness, r=cylinder radius, and p= pressure on the cylinder wall. That 
pressure is essentially resisted by bending stiffness, EI/(1–n2), of a beam that forms a 
strip along the cylinder wall, which is the first term in Eq. (12), as well as the hoop stress 
effect, represented by the stiffness Et/r2 in the second term in Eq. (12). In other words, 
the beam that forms a strip along the cylinder wall is a beam on elastic foundation, with 
stiffness 

 𝑘# =
𝐸 ⋅ 𝑡
𝑟!  (13) 

“Stiffness” from Ponding 
Ponding is the phenomenon of progressive load concentration as the weight of water 
bending a beam, leading to concentration of water where there is most deflection. In this 
case, the differential equation is the same as for a beam on elastic foundation, except the 
stiffness of that foundation is now negative: 

 𝑘# = −𝜌$ ⋅ 𝑔 ⋅ 𝑏 (14) 

where rw=mass density of water, g=9.81m/s2, and b=width of the beam considered, e.g., 
unit width. The negative stiffness is a unique situation in this document, not addressed by 
the general solution to the differential equation for a beam on elastic foundation 
established later in this document. However, a separate example on ponding posted near 
this document addresses that unique case.  

Bending 
Differential Equation 
Compared with the basic Euler-Bernoulli beam theory, it is sufficient to modify the 
equation for vertical equilibrium to obtain the differential equation for a beam on elastic 
foundation. As a result, the following conventions from basic beam bending hold valid: 
1) Clockwise shear force is positive; 2) Bending moment with tension at the bottom is 
positive; 3) Tension stress is positive; 4) The z-axis points upwards, so that upwards 
displacement, w, is positive; 5) The distributed load, qz, is positive upwards. Figure 3 
shows the forces acting on an infinitesimal beam element. The springs that illustrate the 
elastic foundation exert a downward force when the beam is subjected to an upward 
displacement.  
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Figure 3: Infinitesimal beam element. 

Vertical equilibrium yields: 

 
 (15) 

Dividing by dx and re-arranging yields 

 
 (16) 

Substitution of this equation into the Euler-Bernoulli beam theory yields the following 
revised differential equation 

 
 (17) 

Another way of deriving the differential equation is to start with the following basic 
differential equation for beam bending: 

 
 (18) 

From earlier it is understood that the applied load, qz, plus the elastic foundation yields a 
total force on the beam element equal to qz–ksw. By substituting this total load in the 
right-hand side of Eq. (18), Eq. (17) is obtained. For convenience, it is rewritten on the 
form 

 
 (19) 

In solving this differential equation, it is useful to define a “characteristic length,” 
sometimes referred to as the elastic length. To approach the definition, it is first noted 
that EI/ks has dimension [m4]. As a result, the following definition of the characteristic 
length has the dimension of length: 
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 (20) 

The convenience of the factor 4 will become apparent later. It is also convenient to work 
with the normalized coordinate ξ instead of the original coordinate, x, along the beam: 

 
 (21) 

To transform the differential equation, differentiation with respect to x is related to 
differentiation with respect to ξ by the chain rule of differentiation: 

 
 (22) 

Hence, the fourth-order derivative with respect to x equals the fourth-order derivative 
with respect to ξ divided by lc4, which yields the following homogeneous version of the 
transformed differential equation, now formulated in the coordinate ξ: 

 
 (23) 

General Solution 
The characteristic equation is g4+4=0 has the four different complex roots (1+i),  
(1–i), (–1+i), and (–1–i). Consequently, the general solution is: 

 
 (24) 

where the phrase “damped terms” is employed to identify terms that vanish as ξ increases 
to infinity. This labeling is useful because the solution for a point load must vanish far 
away from the point of load application. In fact, only the damped terms appear in many 
practical situations. To shorten the notation under such circumstances, the following 
auxiliary functions are defined: 

 
 (25) 

 
 (26) 

 
 (27) 

 
 (28) 

These functions are plotted in Figure 4, where it is observed that they decay rapidly with 
ξ. In fact, all functions approach zero once ξ increases beyond 4.  

lc ≡
4 ⋅EI
ks

4      ⇒      EI
ks

= lc
4

4

ξ = x
lc

d
dx

= d
dξ

⋅ dξ
dx

= 1
lc
⋅ d
dξ

d 4w
dξ 4

+ 4 ⋅w = 0

   

w(ξ ) = C1 ⋅e
−ξ cos(ξ )+C2 ⋅e

−ξ sin(ξ )
"Damped terms"

  
+C3 ⋅e

ξ cos(ξ )+C4 ⋅e
ξ sin(ξ )

"Undamped terms"
  

  g1 = e−ξ cos(ξ )

  g2 = e−ξ sin(ξ )

  g3 = g1 + g2

  g4 = g1 − g2



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Beams on Elastic Foundation Updated April 8, 2024 Page 7 

 
Figure 4: g-functions. 

The auxiliary functions also have the following properties: 

 
 (29) 

These relationships are helpful for deriving the bending moment, etc. from the general 
solution. The starting point is the general solution with only the damped terms, which 
reads: 

 
 (30) 

Differentiation yields the rotation: 

 
 (31) 

Another differentiation yields the bending moment: 

 
 (32) 

Yet another differentiation yields the shear force: 

 
 (33) 
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Beam with End Forces 
As a “reference case” for the analysis of several other problems it is useful to consider the 
beam shown in Figure 5, where one end is subjected to the forces Vo and Mo, while the 
other end is “infinitely” far away.  

 
Figure 5: Beam with end-forces. 

Notice that both Vo and Mo are positive, i.e., the shear force is clockwise and the bending 
moment gives tension at the bottom. Because the beam is infinitely long in one direction, 
the solution cannot have contributions from the un-damped terms. As a result, the 
solution is given by Eq. (30). Because g1=g3=g4=1 and g2=0 at ξ=0, Eqs. (32) and (33) 
yield the follow expression for the bending moment and shear force at ξ=0: 

 
 (34) 

 
 (35) 

Setting those expressions equal to Mo and Vo, respectively, yields: 

 
 (36) 

 
 (37) 

Substitution of Eqs. (36) and (37) into Eq. (30) to (33) yields the following solution for 
this loading case: 

 
 (38) 

 
 (39) 

 
 (40) 

 
 (41) 

Beam with Point Load 
The previous solution is now utilized to analyze the infinitely long beam in Figure 6, 
which has a point load applied at ξ=0.  
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Figure 6: Beam with point load. 

Immediately to the left of the point load the shear force is P/2, while immediately to the 
right it is –P/2. That is, with reference to the previous case, Vo=–P/2. Furthermore, the 
rotation at the point load is zero: 

 
 (42) 

Substituting Vo=–P/2 and solving for Mo yields 

 
 (43) 

where it is noted that the bending moment at the point load is the same as that of a simply 
supported beam with length lc loaded at midspan. In fact, that is the reason that the 
integer 4 was introduced in the definition of lc in Eq. (20). In short, the solution for the 
beam in Figure 6 is given by Eqs. (38) to (41) with  

 
 (44) 

and 

 
 (45) 

That yields the following solution for a beam on an elastic foundation with a point load: 
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 (49) 

This solution, as the previous ones, is defined only for positive ξ-values. However, it is 
readily plotted on both sides of the origin by multiplying Eqs. (47) and (49) by the sign of 
ξ, namely ξ/|ξ|. This is done because the rotation and the shear force are asymmetric 
functions. For example, from the discussion before Eq. (42) it is clear that the shear force 
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is positive where ξ is negative, and vice versa. Another common plotting convention is to 
multiply Eq. (48) by (–1) to get the moment diagram on the tension side of the beam. 

Cluster of Point Loads 
If more than one point load is present, such as the situation in Figure 7, the solution is 
obtained by superposition. Assuming that the beam is sufficiently long for the solution to 
“dampen out” before the beam end is reached, the solution in Eqs. (46) to (49) is 
employed. For example, for the situation in Figure 7 the bending moment is: 

 
 (50) 

 
Figure 7: Beam with point load cluster. 

Distributed Load 
Above, the solutions w, q, M, and V were established for a beam with a point load. That 
solution can also be employed in the analysis of beams with distributed load. The point 
load that was previously applied at ξ=0 is now applied at the generic location ξ=c. 
Moreover, the point load, P, is considered to be one infinitesimal part of a distributed 
load, i.e., P=q.dx. Because dx=lc.dξ the load to be inserted into the previous solutions 
w(ξ), q(ξ), M(ξ), and V(ξ) is P=q.lc.dξ. On that basis, the solution for a distributed load 
between ξ=a and ξ=b is 

 
 (51) 

etc. for the q(ξ), M(ξ), and V(ξ), assuming constant load intensity, q. 

Torsion 
Differential Equation 
The differential equation for St. Venant torsion, without resistance from an elastic 
foundation, is 

  (52) 

The torsional resistance from an elastic foundation is a distributed torque equal to kf.f, 
which implies that the effective distributed torque is equal to mx–kf.f. That leads to the 
following modified differential equation for St. Venant torsion: 

  
M =

P0 ⋅ lc

4
g3(ξ )− 2g2(ξ )( ) + Pi ⋅ lc

4
g3(ξ −ξi )− 2g2(ξ −ξi )( )

i=1

2

∑

ξ

EI
ks

P0 P1 P2

ξ1

ξ2

  
w(ξ ) = w(ξ − c)dc

a

b

∫ = −
qlc

3

8EI
⋅ lc ⋅ g4(ξ − c)− 2g1(ξ − c)( )dc

a

b

∫

GJ ⋅φ ''+mx = 0



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Beams on Elastic Foundation Updated April 8, 2024 Page 11 

  (53) 

Now consider the homogeneous version of this equation, i.e., let mx=0, and define the 
auxiliary quantity 

  (54) 

which is the characteristic length in torsion. This definition gives a length-measure 
because kf is in units of force. As done previously for bending, the normalized coordinate 
ξ is defined as in Eq. (21): ξ=x/lc, with resulting differentials given in Eq. (22). This 
means that the homogeneous version of Eq. (53) is 

  (55) 

General Solution 
The characteristic equation is g2+g=0 has the two roots g=0 and g=1. Consequently, the 
general solution is: 

 
 (56) 

The torque associated with this solution is 

 
 (57) 

Beam with End Torque 
As a reference case for the analysis of other problems, consider a beam like the one in 
Figure 5, with a torque, To, applied at the free end. Because the beam is infinitely long in 
one direction, the solution cannot have contributions from the “un-damped” term. As a 
result, C1=0, and the equation that determines C2 is: 
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which yields 
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which in turn means that the solution is 
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Rigid Beam 
For cases with long characteristic length relative to the beam length, L, it may be 
appropriate to consider the beam as a rigid body as it rotates under applied torque, To. In 
that case the rotation is simply the constant 

 
 (61) 

and the torque in the beam increases linearly from zero at the free end to 

 
 (62) 

at a distance x from the free end. 
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