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Beam with Membrane Effect

The beam shown below has pin-supports at both ends. That fact, combined with large deformations,
implies that the distributed load will be carried by two effects: Beam bending plus the membrane
effect, which could also be called the hammock effect. Another name for this phenomenon is
geometric nonlinearity.
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An energy method is utilized here to solve the problem. That implies using the principle of minimum
potential energy (PMPE), which reads

oI1=0
where § means “variation” and I1 is the total potential energy, which is
m=U+H
where U is strain energy and H is the potential energy in the external load. The latter is
(L
H= - qwdx
where w is downwards displacement. The strain energy is
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where E is Young’s modulus. To include the membrane effect it is necessary to use a strain
expression that includes geometric nonlinearity. That is included in Green’s strain, which is the
second term here added to the ordinary strain associated with bending:
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That strain is now substituted into the expression for U. Because the area-integral of z is zero, the
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terms with z will vanish when U is calculated, while those with z? give rise to the moment of inertia;

hence, the strain energy reads
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The first term in U is the ordinary contribution from bending; the last term account for the strain

from the rotation of the beam segments. Now, consider a trigonometric shape function:
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Here is a plot of that Ritz function:

Plot[w/. {A->1, L->10}, {x, 0, 10}, PlotStyle -> Black]
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The shape function is next differentiated and substituted into the strain energy integral:
dw=D[w, x];

ddw = D[dw, x];
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The potential energy in the load is:
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L
H_J -qwdx;
0

The maximum displacement is, from the principle of minimum potential energy:

m=U+H;
equation=DJI, A];
sol = Solve[equation==0, A];

That solution looks like this:

sol[[1]] // Simplify

2 22/3 ET °/3
{Ae— - +

which yields:

21/3 (9 EA2 L% q + \[EA (2EI3 710 + 81 EALS o2 )1/3

EA 7°/3 }

In order to show numerical results, consider a European wide-flange beam HEB120 spanning 5m and
bending about its strong axis:

E = 200000;
values = {EA -> E 3400, EI -> E 8640000, L -> 5000} ;

The maximum displacement for a load g=3kN/m is:
A/.sol[[1]] /.values/.q->3//N
which yields: 13,7956

Compare that with ordinary beam theory for a simply supported beam:

. 5qlL?
ABasic = 5

384 EI’
ABasic /. values/.q->3//N

which yields: 14,1285

The ratio of length to displacement is often used as an index to judge if the displacement is acceptable
(around 300 to 360 tends to be accepted):
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L

/. values
ABasic/.q->3//N

which yields: 353.894

Although it is difficult to imagine how the supports can be designed to have absolutely zero
horizontal displacement when the loads come onto the beam, notice how the “hold-back™ and the
membrane effect increases when the load increases:

Plot[{ABasic /. values, A/.sol[[1]] /. values}, {q, 3, 10},
AxeslLabel -> {"Load", "Displacement"},
PlotStyle -> {{Black, Dashed}, {Black, Thin}},
PlotLegends —
Placed[LineLegend[{"Ordinary beam theory", "With membrane effect"}],
{Left, Top}]]

Displacement

45 """ Ordinary beam theory R
With membrane effect Lo’
40 .-
35 Pl
which yields: .7
30 I3
25 ,,¢’
20 P
;\’\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Load
4 5 6 7 8 9 10

Examples Updated April 8, 2024 Page 4



