
Beam with Membrane Effect
The beam shown below has pin-supports at both ends. That fact, combined with large deformations, 
implies that the distributed load will be carried by two effects: Beam bending plus the membrane 
effect, which could also be called the hammock effect. Another name for this phenomenon is 
geometric nonlinearity.
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An energy method is utilized here to solve the problem. That implies using the principle of minimum 
potential energy (PMPE), which reads

       δΠ=0
       
where δ means “variation” and Π is the total potential energy, which is

       Π=U+H
       
where U is strain energy and H is the potential energy in the external load. The latter is

       H = -∫0
L q w ⅆx

       
where w is downwards displacement. The strain energy is

       U = 1
2
E ∫0

L ∫A ϵ2 ⅆA ⅆx

       
where E is Young’s modulus. To include the membrane effect it is necessary to use a strain 
expression that includes geometric nonlinearity. That is included in Green’s strain, which is the 
second term here added to the ordinary strain associated with bending:

       ϵ = z d2 w
dx2

+ 1
2
 dw
dx


2

       
That strain is now substituted into the expression for U. Because the area-integral of z is zero, the 
terms with z will vanish when U is calculated, while those with z2 give rise to the moment of inertia; 
hence, the strain energy reads

       U = ∫0
L EI

2
 d2 w
dx2


2
+ EA

8
 dw
dx


4
 ⅆx

       
The  first term in U is the ordinary contribution from bending; the last term account for the strain 
from the rotation of the beam segments. Now, consider a trigonometric shape function:
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w = Δ Sin
π

L
x;

Here is a plot of that Ritz function:

Plot[w /. {Δ -> 1, L -> 10}, {x, 0, 10}, PlotStyle -> Black]
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which yields:

The shape function is next differentiated and substituted into the strain energy integral:

dw = D[w, x];

ddw = D[dw, x];

U = 
0

L EI

2
ddw2 +

EA

8
dw4 ⅆx;

The potential energy in the load is:
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H = 
0

L
-q w ⅆx;

The maximum displacement is, from the principle of minimum potential energy:

Π = U + H;
equation = D[Π, Δ];
sol = Solve[equation ⩵ 0, Δ];

That solution looks like this: 

sol[[1]] // Simplify

Δ →
2

3
-

22/3 EI π5/3

9 EA2 L4 q + EA3 2 EI3 π10 + 81 EA L8 q2 
1/3

+

21/3 9 EA2 L4 q + EA3 2 EI3 π10 + 81 EA L8 q2 
1/3

EA π5/3


which yields:

In order to show numerical results, consider a European wide-flange beam HEB120 spanning 5m and 
bending about its strong axis:

Ε = 200000;
values = {EA -> Ε 3400, EI -> Ε 8640000, L -> 5000};

The maximum displacement for a load q=3kN/m is:

Δ /. sol[[1]] /. values /. q -> 3 // N

13.7956which yields:

Compare that with ordinary beam theory for a simply supported beam:

ΔBasic =
5 q L4

384 EI
;

ΔBasic /. values /. q -> 3 // N

14.1285which yields:

The ratio of length to displacement is often used as an index to judge if the displacement is acceptable 
(around 300 to 360 tends to be accepted):
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L

ΔBasic /. q -> 3 // N
/. values

353.894which yields:

Although it is difficult to imagine how the supports can be designed to have absolutely zero 
horizontal displacement when the loads come onto the beam, notice how the “hold-back” and the 
membrane effect increases when the load increases:

Plot[{ΔBasic /. values, Δ /. sol[[1]] /. values}, {q, 3, 10},
AxesLabel -> {"Load", "Displacement"},
PlotStyle -> {{Black, Dashed}, {Black, Thin}},
PlotLegends →

Placed[LineLegend[{"Ordinary beam theory", "With membrane effect"}],
{Left, Top}]]
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which yields:
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