
Applying the Rules of Probability
We work with the following “rules” in order to calculate event probabilities: 

De Morgan’s rule for complement of a union (applies also for more events): 
E1 ⋃E2 = E1 ⋂ E2

De Morgan’s rule for complement of an intersection (applies also for more events): 
E1 ⋂ E2 = E1 ⋃ E2

Probability of the complement: 
P(E) = 1-P(E)

Union rule: 
P(E1 ⋃ E2) = P(E1) + P(E2) - P(E1 E2)

Inclusion-exclusion rule (applies also for more events): 
P(E1 ⋃ E2 ⋃ E3) = P(E1) + P(E2) + P(E3) - P(E1 E2) - P(E1 E3) - P(E2 E3) + P(E1 E2 E3)

Conditional probability rule: 

P(E1|E2) = PE1 E2

PE2

Multiplication rule: 
P(E1E2) = P(E1|E2)P(E2) = P(E2|E1)P(E1)

Bayes’ rule: 

P(E1|E2) = PE2 E1

PE2
P(E1)

Rule (theorem) of total probability (for MECE events): 
P(A) = ∑i=1

N P(A Ei) P(Ei)

Statistical independence is checked by:
P(E1|E2) = P(E1) or  P(E2|E1) = P(E2) 

Statistical independence has the consequence: 
P(E1E2) = P(E1)P(E2) 
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Transportation Network
This problem considers the figure shown below. It is instructive to think of that figure as a 
transportation network between two locations indicated by solid dots. The rectangles are thought of as 
infrastructure objects, such as bridges. Following that analogy, E1 denotes the event that Bridge 1 is 
closed, and similar for E2, E3, and E4. The objective is to determine the probability that transportation 
between the two locations is either possible or not. Interestingly, this is an introductory example that 
also appears far down the road, so to speak, in the topic entitled System Reliability. At that time, the 
figure below will be referred to as a “reliability block diagram” with applications far beyond 
transportation networks. For now, the simplifying assumption is made that the components of the 
network, i.e., the events Ei are statistically independent. It is that assumption that makes the problem 
solvable here, but statistical independence is hard to come by, in realistic problems. For example, for 
the considered network, it may be the same hazard that lurks behind each failure event; that may 
introduce statistical dependence. Later, in System Reliability, the components may be structural 
members or limit-state functions that share parameters, again introducing statistical dependence. 

E1

E2

E4

E3

Let the individual event probabilities be:

PofEi = 0.2;

The probability that the communication between the locations is unavailable is, by inspection of the 
figure above: 
P(E1 E2 E4 ⋃ E3 E4) 

The union rule gives:
P(E1 E2 E4 ⋃ E3 E4) = P(E1 E2 E4) + P(E3 E4) - P(E1 E2 E3 E4)

Statistical independence gives:
P(E1 E2 E4) = P(E1)P(E2)P(E4)
P(E3 E4) = P(E3)P(E4)
P(E1 E2 E3 E4) = P(E1)P(E2)P(E3)P(E4)

That gives the final result:
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Pclosed = PofEi3 + PofEi2 - PofEi4

0.0464which yields:

The probability that communication between the two cities is open can now be determined in two 
ways. Either by considering the complement of the previous solution and using de Morgan’s rules, or 
inspecting the figure again. Both give the same result; here, we start with the complement of the 
previous calculations, and the use of de Morgan’s rules:

P(E1 E2 E4 ⋃E3 E4) = P(E1 E2 E4⋂E3 E4) = P( (E1⋃E2⋃E4) ⋂ (E3⋃E4) )

However, the two parentheses on either side of the intersection symbol are not statistically 
independent, because E4 appears in both. We must therefore proceed in order to obtain an answer.  
Caution is required when applying the distributive rule, essentially “multiplying” the two parentheses. 
To that end, observe that E4 appears in both parenthesis. For that reason, we pull that even out and 
place it in a separate entry of the union of events that now emerge. Then, the distributive rule allows 
us to “multiply” E3 into the parenthesis where now E1 and E2 remain. The result is:

... = P(E1 E3 ⋃ E2  E3 ⋃ E4)

One may inspect the figure in order to establish and verify that expression. Regardless, the result is:

Popen = (1 - PofEi)2 + (1 - PofEi)2 + (1 - PofEi) - 3 (1 - PofEi)3 + (1 - PofEi)4

0.9536which yields:

Notice the unit sum of the two answer obtained, which makes sense because one is the complement of 
the other:

Pclosed + Popen

1.which yields:

Facility Exposed to Hazards
En engineering facility is subjected to a hazard, e.g., ground shaking, with three possible intensities: 
S=strong, M=moderate, W=weak. The following probabilities are given:

PofS = 0.03;
PofM = 0.3;
PofW = 0.67;

For each hazard level, there is a probability that the facility will fail. The higher the intensity of the 
hazard, the higher the conditional failure probability is:
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For each hazard level, there is a probability that the facility will fail. The higher the intensity of the 
hazard, the higher the conditional failure probability is:

PofFgivenS = 0.25;
PofFgivenM = 0.05;
PofFgiveW = 0.015;

The probability of failure of the facility in an impending occurrence of the hazard is obtain by the rule 
of total probability:

PofF = PofFgivenS PofS + PofFgivenM PofM + PofFgiveW PofW

0.03255which yields:

Next, let’s say that we receive word that the facility has failed. In that case, the probability that the 
earthquake was of moderate strength is obtained via Bayes’ rule:

PofMgivenF =
PofFgivenM

PofF
PofM

0.460829which yields:

Testing for Defect in Wood Products
Consider a rare defect with a certain type of engineered wood product. For each specimen, we define 
the event D=defect is present and T=test shows defect. During production there is a small probability,

PofD = 0.008;

that any one product comes out defect. The products are tested by a good but imperfect test device. 
Specifically, if a product is defect then there is a probability,

PofTgivenD = 0.9;

that the test device will indicate a flaw.  On the other hand, if a product does not have the defect then 
there is a probability,

PofTgivenNotD = 0.07;

that the test devise will still categorize it as a defect product.  First, let us examine the probability that 
a product that has tested as defect is actually defect. That probability is available via Bayes’ rule. 
However, before we can evaluate that formula, we recognize that the denominator in Bayes rule is 
P(T), i.e., the probability of the test showing a defect, for any given specimen. As often is the case in 
applications of Bayes’ rule, that denominator-probability is evaluated by means of the rule of total 
probability:
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that the test devise will still categorize it as a defect product.  First, let us examine the probability that 
a product that has tested as defect is actually defect. That probability is available via Bayes’ rule. 
However, before we can evaluate that formula, we recognize that the denominator in Bayes rule is 
P(T), i.e., the probability of the test showing a defect, for any given specimen. As often is the case in 
applications of Bayes’ rule, that denominator-probability is evaluated by means of the rule of total 
probability:

PofT = PofTgivenD PofD + PofTgivenNotD (1 - PofD)

0.07664which yields:

We are then ready to apply Bayes’ rule:

PofDgivenT =
PofTgivenD

PofT
PofD

0.0939457which yields:

It may appear strange that the probability of a defect is so small even when the indicator says there is 
a defect present. The reasons for this is the  low probability of defects in the general population of  
wood products, combined with the imperfection in the testing device. This kind of example is 
sometimes offered to medical professionals, who are making decisions about treatment based on 
testing outcomes from imperfect devices. Notice that if a second test is conducted, then the result is 
compounded with the previous calculations simply by reapplying Bayes’ rule and the rule of total 
probability, but now with P(D | T) from earlier serving as P(D). That gives a far greater probability of 
defect, given a second test result suggesting a flaw: 

PofT = PofTgivenD PofDgivenT + PofTgivenNotD (1 - PofDgivenT);

PofDgivenT =
PofTgivenD

PofT
PofDgivenT

0.571388which yields:

Markovian Wood Product Defects
This example continues the consideration of defects in wood products, now without explicit test 
results, but rather with probabilistic information about the dependence of one wood product on those 
tested immediately prior. This example takes features from Problems 2.20 and 2.21 in the textbook on 
Probabilistic Concepts in Engineering by Ang & Tang. The word Markovian, used in the heading, 
means dependence on the previous test result, but not further back. That will be the starting point, but 
it is extended later in the example.  Let the probability of defect in any given product be as given in 
the previous example. Denote the presence of a defect in three consecutively manufactured products 
be denoted by D1, D2, and D3. For now, the Markovian assumption stands; i.e., the presence of a 
defect in any given specimen depends only on the specimen manufactured immediately prior to this 
one. In fact, if the previous specimen was defect, then that triples the probability of a defect:
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PofD2givenD1 = 3 PofD;
PofD3givenD2 = 3 PofD;

Now, let’s calculate some probabilities with the given information. First, for reference, the probability 
of a defect for a single specimen, without any information about past specimens is:

PofD

0.008which yields:

Next, the probability that two consecutive wood products are defect, is, using the multiplication rule:

PofD1andD2 = PofD2givenD1 PofD

0.000192which yields:

Next, we calculate the probability that three consecutive wood products are defect, again using the 
multiplication rule:

PofD1andD2andD3 = PofD3givenD2 PofD2givenD1 PofD

4.608 × 10-6which yields:

In order to contrast those calculations with a non-Markovian situation, we now postulate that if the 
two previous specimens have been defect, then the probability of a defect in the next specimen is not 
triple P(D) but rather double:

PofD3givenD2andD1 = 2 PofD;

The probability of three consecutive defect products is now:

P(D1 D2 D3) = P(D3 D1 D2) P(D1 D2) =  P(D3 D1 D2) P(D2 D1)  P(D1), which evaluates to:

PofD1andD2andD3 = PofD3givenD2andD1 PofD2givenD1 PofD

3.072 × 10-6which yields:

Now back to the Markovian case, if we wish to calculate the probability that at least one out of three 
products are defect, then we can use the same strategy as employed then calculating the probability of 
occurrence, i.e., any number of occurrences, in Bernoulli trials or the Poisson process. That is, we 
calculate the probability of the complement: 

P(at least one defect out of three products) 
= 1- P(no defects in three products) 
= 1-PD1 D2 D3  
= 1-PD3 D2 PD2 D1 P(D1)    ... Eq. (*)

However, we do not have the probabilities PD3 D2 and PD2 D1. This problem is neatly solved 
by Ang & Tang by first giving the generic hint: 

P E1 ⋃ E2 = 1- P( E1 ⋃ E2) = 1- P(E1 E2)   ... Eq.(**)

In order to proceed, expand the left-hand side in Eq. (**) in the following manner:

P E1 ⋃ E2 = P(E1) + P(E2) - P E1 E2 

where the last term contains what we seek:

P E1 E2 = P E2 E1P( E1) 

Next, we spell out the last term in Eq. (**) in a similar manner:

P(E1 E2) = P(E2 E1) P(E1)

Substituting everything back into Eq. (**) yields: 

P(E1) + P(E2) - P E2 E1 P( E1) = 1- P(E2 E1) P(E1)

Solving for the sought conditional probability yields:

P E2 E1 = 
P(E1)+P(E2) -1- PE2 E1 PE1

P( E1)

For the numbers given earlier in this example, that conditional probability is:
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Now back to the Markovian case, if we wish to calculate the probability that at least one out of three 
products are defect, then we can use the same strategy as employed then calculating the probability of 
occurrence, i.e., any number of occurrences, in Bernoulli trials or the Poisson process. That is, we 
calculate the probability of the complement: 

P(at least one defect out of three products) 
= 1- P(no defects in three products) 
= 1-PD1 D2 D3  
= 1-PD3 D2 PD2 D1 P(D1)    ... Eq. (*)

However, we do not have the probabilities PD3 D2 and PD2 D1. This problem is neatly solved 
by Ang & Tang by first giving the generic hint: 

P E1 ⋃ E2 = 1- P( E1 ⋃ E2) = 1- P(E1 E2)   ... Eq.(**)

In order to proceed, expand the left-hand side in Eq. (**) in the following manner:

P E1 ⋃ E2 = P(E1) + P(E2) - P E1 E2 

where the last term contains what we seek:

P E1 E2 = P E2 E1P( E1) 

Next, we spell out the last term in Eq. (**) in a similar manner:

P(E1 E2) = P(E2 E1) P(E1)

Substituting everything back into Eq. (**) yields: 

P(E1) + P(E2) - P E2 E1 P( E1) = 1- P(E2 E1) P(E1)

Solving for the sought conditional probability yields:

P E2 E1 = 
P(E1)+P(E2) -1- PE2 E1 PE1

P( E1)

For the numbers given earlier in this example, that conditional probability is:

PnotD3givenNotD2 =
(1 - PofD) + (1 - PofD) - (1 - PofD2givenD1 PofD)

(1 - PofD)

0.992129which yields:

In turn, that gives the following result when evaluating Eq. (*):
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PofAtLeasOneDefectInThree = 1 - PnotD3givenNotD22 (1 - PofD)

0.0235545which yields:

Notice that if we had rather wished to calculate the probability that at least one out of TWO products 
are defect, then that case is simpler: 

P(D1 ⋃ D2) = P(D1) + P(D2) - P(D1 D2) = P(D1) + P(D2) - P(D2 D1) P(D1) 

The value of that expression is:

PofAtLeasOneDefectInTwo = PofD + PofD - PofD2givenD1 PofD

0.015808which yields:

Pipelines Cut by Fault-line Rupture
Consider three pipelines crossing an earthquake fault-line. A rupture may occur along that fault-line, 
causing an earthquake. We assume that the impending rupture is exactly 30km long, and that all of 
the rupture will occur within the confines of the fault-line shown in the figure below. Furthermore, 
the rupture is equally likely to occur anywhere within the fault-line. If the rupture crosses a pipeline 
then that pipeline is assumed to fail. This is an example of obtaining probabilities by geometrical 
considerations, but notice that conditional probabilities can not be determined in that manner. That 
point is relevant, because we here wish to determine whether the individual pipe failures are 
statistically independent. 

60km 10km12.5km 67.5km
Fault-line

Rupture (30km)

Pipe 1 Pipe 2 Pipe 3

Notice that the total “outcome space” is

outcomeSpace = (60 + 10 + 12.5 + 67.5) - 30

120.which yields:

The subtraction of 30km in that expression is because the rupture cannot extend beyond the ends of 
the fault-line. Also note that a pipe fails if the rupture occurs within a 30km portion of the outcome 
space. This means that the probability of failure for any individual pipeline is “event” / “outcome 
space”:
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The subtraction of 30km in that expression is because the rupture cannot extend beyond the ends of 
the fault-line. Also note that a pipe fails if the rupture occurs within a 30km portion of the outcome 
space. This means that the probability of failure for any individual pipeline is “event” / “outcome 
space”:

PofAnyPipe =
30

outcomeSpace

0.25which yields:

In order to test for statistical independence, we must also evaluate P(failure of pipe 1 | failure of pipe 
2), etc. We cannot determine conditional probabilities by geometrical considerations, but the 
conditional probability rule comes to rescue: 

PFi Fj =
PFi Fj

PFj

The probability of joint (simultaneous) pipe failures can indeed be determined by geometrical 
considerations:

PofPipe1andPipe2 =
30 - 10

outcomeSpace

0.166667which yields:

PofPipe1andPipe3 =
30 - 10 - 12.5

outcomeSpace

0.0625which yields:

PofPipe2andPipe3 =
30 - 12.5

outcomeSpace

In turn, that gives the following conditional probabilities:

PofPipe1givenPipe2 =
PofPipe1andPipe2

PofAnyPipe

0.666667which yields:

PofPipe1givenPipe3 =
PofPipe1andPipe3

PofAnyPipe

0.25which yields:
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PofPipe2givenPipe3 =
PofPipe2andPipe3

PofAnyPipe

Interestingly, pipelines 1 and 3 are spaced exactly by the amount that makes their failure events 
statistically independent, i.e., P(F1 F3) = P(F3 F1) = P(F1) = P(F3) = 0.25. In other words, if we 
receive word that pipeline 1 has failed, then pipeline 3 is exactly at such a distance that its probability 
of failure does not change. 
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