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Uniaxial Plasticity Material Model 
Plasticity theory addresses materials that yield, and steel is the typical example. Figure 1 
shows the idealized stress-strain response of an imagined steel coupon that is first 
stretched, then unloaded and compressed, then stretched again. The stiffness transitions 
from the elastic stiffness, E, to the plastic stiffness, aE, whenever the material enter a 
yielding phase, called “plastic flow.” If the material had been perfectly plastic, then the 
plastic stiffness would have been zero. The plastic flow is the cause of “hardening,” 
which is the first topic addressed in this document.  

 
Figure 1: Theoretical uniaxial plastic material behaviour. 

Hardening 
The black line in Figure 1 describes a situation where the material yields any time the 
absolute value of the stress, |s |, reaches the yield stress, fy. That is the case of no 
“hardening.” However, plastic flow usually causes some form of hardening. The blue and 
red lines in Figure 1 exhibits two different forms of hardening: 

• Kinematic hardening means that the plastic flow follows the two outermost 
slanted blue dashed lines in Figure 1. Those two lines delineate the stress range 
within which the response is elastic. The length of that stress range remains 2fy, 
but the elastic stress range shifts by skin. In other words, with kinematic hardening 
for a uniaxial material, the stress range within which the stress remains elastic is 
[–fy+skin, fy+s kin]. Kinematic hardening is a way to model the Bauschinger effect, 
after the professor of Engineering Mechanics at Munich Polytechnic, Johann 
Bauschinger (1834–1893).  
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• Isotropic hardening is represented by red lines in Figure 1. Similar to kinematic 
hardening, the result of isotropic hardening is a change in the stress range within 
which the response remains elastic. However, in isotropic hardening the stress 
range does not shift; it changes length.  

In the plasticity theory presented next, the region in the stress space within which the 
response remains elastic is bounded by a “yield surface.” Kinematic hardening merely 
shifts that surface, while isotropic hardening changes the size of the elastic region 
bounded by that surface.  

Second Deviatoric Stress Invariant 
The document on stress-based failure criteria introduces the deviatoric stress tensor, s, 
and the associated stress invariants, J1, J2, and J3. It was established that the von Mises 
failure criterion employs the second deviatoric stress invariant, J2: 

  (1) 

In general, 

  (2) 

For plane stress states, 

  (3) 

For uniaxial stress, 

  (4) 

Because of the formulation in Eq. (1), where the number three appears, Eq. (4) 
reasonably implies that the von Mises failure criterion for the uniaxial case is |s | < fy.  
J2 plasticity continues the use of the deviatoric stress. Classical J2 plasticity exhibits a 
non-smooth transition between the elastic and plastic states, as shown in Figure 1 for the 
uniaxial case. Generalized J2 plasticity is an extension characterized by a smooth 
transition between the elastic and plastic response regimes.  

Yield Function 
The concept of a yield function, or yield condition, whose value is determined by the 
deviatoric stress, is central in plasticity theory. Denoted by f, the yield function is a 
function of the deviatoric stress and various material constants. f < 0 implies an elastic 
stress state, while “plastic flow” may occur when the stress state is on the “yield surface” 
in the stress space, i.e., f=0. In generalized plasticity, addressed later, the stress state is 
allowed to exceed the yield surface. f >0 implies that inelastic effects may be occurring, 
depending on whether loading or unloading occurs. For the uniaxial stress case illustrated 
in Figure 1, the black-line case of no hardening is represented by the yield function 
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  (5) 

which also represents the von Mises failure criterion in Eq. (1). The blue-line case in 
Figure 1, illustrating kinematic hardening, is represented by the yield function 

  (6) 

The red-line case in Figure 1, illustrating isotropic hardening, is represented by the yield 
function 

  (7) 

where fiso is the shift of the red line. Mixing kinematic and isotropic hardening leads to 
the following yield function for uniaxial stress: 

  (8) 

Python 
A uniaxial material model with kinematic hardening is implemented in Python and posted 
on this website under the name G2 Bilinear Material Class.  

Formal Model Formulation 
The intention of the equations above is to give a sense of what a yield function is, and 
what kinematic and isotropic hardening represent, especially related to Figure 1. In the 
following, a more formal plasticity model is presented for the uniaxial case, resting on 
some of the material that Professor Armero at the University of California at Berkeley 
taught me at the turn of the century. The following model is “rate independent,” meaning 
that the loading is so slow that the strain rate with respect to actual time is not relevant. 
The modelling assumptions are: 

1. The yield function is formulated in terms of an isotropic hardening variable, a, 
whose value changes during yielding: 

  (9) 

2. The additive strain decomposition separates the total strain into an elastic part, e e, 
and a plastic part, e p: 

  (10) 

 
Figure 2: Relationship between elastic and plastic strain. 
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3. A “perfectly plastic” stress-strain relationship is employed, implying that only the 
elastic part of the strain causes stress, as illustrated in Figure 2: 

  (11) 

4. The evolution of the plastic strain during yielding is governed by a flow rule, 
formulated in terms of the plastic strain rate, g : 

  (12) 

The variable g plays an important role in this plasticity model. It represents the 
change in the plastic strain per unit of pseudo-time clocked by the steps of the 
nonlinear analysis algorithm. We can denote that pseudo-time by t and one analysis 
increment by Dt. However, we later avoid working with the time variable by defining 
Dg =Dt.g, thereby shifting focus to the change in plastic strain in each load-step, i.e., 
Dg. The key objective in a load-step with yielding is to determine Dg.  

5. The rate of change of the back-stress, i.e., the kinematic hardening variable, sb, is 
assumed equal to the rate of change in the plastic strain, multiplied by a material 
constant, H: 

  (13) 

6. Several options are available as as isotropic hardening rules. A “saturation” type 
hardening rule is formulated in terms of the material constant d and the asymptotic 
yield stress fy¥: 

  (14) 

A simpler and linear isotropic hardening rule features one constant and reads 

  (15) 

where this a should not be confused with the a employed in Figure 1. For both 
isotropic hardening rules, the rate of change of a is assumed equal to the rate of 
change in the plastic strain: 

  (16) 

KKT and Consistency 
The interplay between the yield function, f, and the rate of plastic strain, g, is at the crux 
of plasticity theory. When an initially elastic stress state, characterized by f<0, reaches 
f=0 then plastic flow, characterized by g>0 ensues. The “KKT conditions” from 
optimization theory enforces the appropriate constraints on f and g :  

  (17) 

  (18) 

  (19) 

σ = E ⋅ε e

!ε p = γ ⋅sign σ −σ kin( )

!σ b = γ ⋅H ⋅sign σ −σ kin( )

f iso(α ) = fy∞ − fy( ) 1− e−δ ⋅α( )

f iso(α ) = K ⋅α

!α = γ

γ ≥ 0

f ≤ 0
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Eqs. (17) and (18) are called necessary conditions and Eq. (19) is referred to as the 
complementary conditions. The acronym KKT is after Harold W. Kuhn and Albert W. 
Tucker, who published the conditions in a paper on nonlinear programming at a Berkeley 
symposium in 1951. William Karush had published the conditions in his 1939 Master's 
thesis, so the conditions are named Karush-Kuhn-Tucker, KKT. In plasticity theory the 
additional “consistency criterion” is formulated as 

  (20) 

which says that the value of f cannot change during yielding. In other words, there is 
either a rate of plastic flow, or there is a rate of change of f in the elastic domain. There 
are situations where the complementarity condition, , is sufficient, but the 
consistency criterion, , often serves an important role in the determination of plastic 
flow, particularly with multi-dimensional stress.  

Trial Elastic State 
The material model presented here is a “total strain” model. This means that the total 
strain, en+1 is given to the material in the state determination, not the incremental strain. 
The objective is to determine the corresponding stress and tangent stiffness. Three history 
variables are stored from the previously committed state: , sbn, and an. The algorithm 
proceeds to determine the trial stress (not the Newton-Raphson trial, but a trial within the 
material) by first assuming an elastic step: 

  (21) 

With the trial stress in Eq. (21), the yield function is evaluated: 

  (22) 

If  then the step is elastic and the trial state is the true stage. If  then 
yielding takes place and the plastic strain needs to be determined. That is the subject of 
the following subsections.  

Time Integration 
Eqs. (12), (13), and (16) are first-order differential equations that govern the evolution of 
plastic strain, back-stress, and isotropic hardening. Numerical methods to solve such 
differential equations include Euler’s forward and backward methods and the midpoint 
rule. To understand those methods, consider Eqs. (12), (13), and (16) written in the 
generic format 

  (23) 

where t is time and a single dot implies one derivative with respect to time. A class of 
solution methods is expressed by 

  (24) 
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where qÎ[0,1] determines where in the interval from t to t+Dt the right-hand side, r, is 
evaluated. With the notation t=tn, tn+1=t+Dt, tn+q=t+q .Dt, x(t)=xn, x(t+Dt)=xn+1, and 
x(t+q .Dt)=xn+q, Eq. (24) takes the form 

  (25) 

Common terminology is that q=0 means the forward Euler method (explicit), q=1 means 
the backward Euler method (implicit), and q=1/2 means the midpoint rule. Addressing 
Eqs. (12), (13), and (16), those methods are applied to the evolution of ep, skin, and a 
during plastic flow:   

  (26) 

  (27) 

  (28) 

where the definition Dg =Dt.g is made and employed. 

Return Mapping 
After finding that  a “return mapping” algorithm corrects for the plastic flow that 
is occurring, bringing the yield function back to zero. The increment in plastic strain, Dg, 
is determined from the complementarity condition, , and the consistency criterion, 

. Applying the previously adopted notation, the yield function reads 

  (29) 

For now, forward Euler, i.e., q=0, is adopted in the following. That means the ingredients 
of the yield function are, starting with the stress: 

  (30) 

where the trial elastic stress is used for now in the signum function, for simplicity, to 
obtain a linear equation for Dg in certain cases considered below. Similarly, the back-
stress is 

  (31) 

and the isotropic hardening variable is 

  (32) 

Using the KKT complementary condition, f=0, to determine the plastic strain increment, 
Dg, a few simple cases are first considered. For the case with no hardening: 
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  (33) 

For the case of linear isotropic hardening: 

  (34) 

For the case of kinematic hardening and linear isotropic hardening: 

  (35) 

Adding saturation isotropic hardening, the yield function is nonlinear in terms of Dg : 

  (36) 

Because it is nonlinear in Dg it is solved by Newton’s algorithm. That would have been 
necessary also with the other cases unless forward Euler was used with the trial stress 
employed in the signum function. The required derivative needed in the Newton 
algorithm is 

  (37) 

Consistent Tangent Stiffness 
For nonlinear analysis with the Newton-Raphson algorithm it is necessary to return the 
tangent stiffness alongside the stress. It can be determined by the consistency criterion, 
but the complementarity condition is first employed here. If the step is elastic, the 
stiffness is 

  (38) 

If the step is plastic, the stiffness is, according to Eq. (30) 

  (39) 

To determine the derivative of Dg we differentiate the yield function, f=0, with respect to 
the strain. For the case with no hardening, given in Eq. (33), that gives 
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  (40) 

which substituted into Eq. (39) naturally gives, for a perfectly plastic material: 

  (41) 

For the case with only linear isotropic hardening, given in Eq. (34): 

  (42) 

which substituted into Eq. (39) gives 

  (43) 

Adding kinematic hardening, as was done in Eq. (35):  

  (44) 

which substituted into Eq. (39) gives 

  (45) 

For the case with only saturation isotropic hardening, given in Eq. (36): 

  (46) 

which substituted into Eq. (39) gives 

  (47) 

The consistency criterion, i.e., , is now employed to determine the tangent stiffness. 
As an example, consider the yield function 

  (48) 
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The time-derivative employed in the consistency criterion is 

  (49) 

Setting  and solving for the plastic strain rate yields 

  (50) 

Now consider the stress-strain relationship written on rate form: 

  (51) 

and substitute the plastic strain in Eq. (12) followed by the strain rate in Eq. (50): 

  (52) 

where the tangent stiffness in the last parenthesis matches Eq. (45). Notice that the 
inclusion of saturation isotropic hardening will result in the tangent stiffness 

  (53) 

Python 
The material model with the hardening models described above is implemented in Python 
and posted on this website under the name G2 Uniaxial Plasticity Class.  
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