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Tapered Beams 
Most beams considered on this website are prismatic. That means the cross-section does 
not change along the length of the beam. What is unique about tapered beams, such as 
those shown in Figure 1, is primarily the distribution of shear stress over the cross-
section, and the presence of vertical axial stress. That is addressed shortly. However, it is 
first highlighted that deformations and stiffness coefficients for tapered beams are 
obtained in a straightforward manner, using the principle of virtual forces, in the same 
manner as for other beam cases.  

 
Figure 1: Examples of tapered beams. 

Deformations and Stiffness Matrix 
Consider the single-tapered beam in Figure 1d) as a beam in its Basic configuration, i.e., 
with one rotational degree of freedom at each end. Let the cross-section width be constant 
and equal to b, and let the cross-section height vary linearly from h1 to h2. The linear 
variation of the cross-section height means the moment of inertia exhibits a cubic 
variation along the beam axis: 
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The calculation of the end rotation caused by a unit moment at the same location, or at 
the other end, is an example of deformation calculations. In turn, that will also provide 
the stiffness matrix. The vehicle for calculating the deformations is the principle of 
virtual forces:  
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where symbols are defined in the document on the “unit virtual load method.” In this 
case, the left-hand side should be interpreted as a unit virtual moment multiplied by the 
real rotation that is sought. The second term in Eq. (2) represents shear deformation, with 
G=E/(2(1+n)) and Av=(5/6)bh. Figure 2 shows the real and virtual bending moment 
diagrams that enter into the calculation of rotations. The ultimate objective is to establish 
the flexibility matrix, followed by inversion to obtain the stiffness matrix. A flexibility 
coefficient, fij, is the deformation at degree of freedom number i due to a unit force along 
degree of freedom number j. For that reason, the flexibility coefficient f11 is, with 
moment diagrams taken from Figure 2: 
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The other flexibility coefficients are calculated in a similar manner, observing that f12=f21. 
However, the resulting expressions are somewhat intricate and simply evaluated in a 
single-tapered beam example posted near this document.  
 

 
Figure 2: Basic beam cases for virtual work computations. 
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Once the flexibility matrix, fb, in the Basic element configuration is established, the 
corresponding stiffness matrix, Kb, is obtained simply by inversion: Kb=fb–1. 

Shear Stress 
It is in the calculation of stresses that tapered beams are conceptually different from 
prismatic beams. Specifically, it is necessary to revisit the equilibrium equations that give 
shear flow and shear stress in the cross-section. It is also necessary to recognize vertical 
axial stresses in the cross-section. One reference for this work is the Strength of Materials 
book by Timoshenko (1956). Another reference, addressing a slightly different case, but 
with more details, is a research paper based on work by Norris and published by the U.S. 
Forest Service (1965).  

 
Figure 3: Revised equilibrium for shear flow. 

To get started, a revised version of a figure that appears in the Euler-Bernoulli beam 
document posted on this website is provided in Figure 3. It visualizes how the upper edge 
of an infinitesimal portion of a tapered beam changes height between the location x and 
x+dx. However, in order to quantify that change in height relative to the change in the full 
cross-section height, a distinction is made, following the previously mentioned work by 
Timoshenko and Norris. Observe in Figure 4 that Timoshenko considered a double-
tapered beam while Norris et al. considered a single-tapered beam. As a result, 
Timoshenko let the z-axis run from the centroid of the cross-section while Norris let it 
run from the horizontal plane of the beam, regardless of whether that plane is at the top or 
at the bottom. Importantly, the z-axis is perpendicular to a horizontal axis in both cases. 

 
Figure 4: Two distinct cases; notice horizontal upper edge in b). 

Before returning to Figure 3 to integrate axial stress one might question the validity of the 
basic axial stress formula s=M/I×z. Timoshenko (1956) addresses that point by 
comparing axial stress values from exact formulas for different degrees of tapering. 
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Unless the tapering is very large, the basic axial stress formula is acceptable. Only for a 
double-tapered case with a 40° angle between the inclined surfaces does the error reach 
10%. That means the axial stress for the z-definition in Figure 4a) is 
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and the axial stress for the z-definition in Figure 4b) is 
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where both formulas have introduced the assumption of a rectangular cross-section with 
width b and total height h. Now consider horizontal equilibrium of the “cut” piece of the 
beam segment in Figure 3, as is customary to determine shear flow. Because of the 
different axis definitions used by Timoshenko and Norris, the following equilibrium 
equations emerge, adopting colours that match those used for the respective surfaces in 
Figure 3: 
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Cancelling b and evaluating the integrals yields 
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Differentiating through by dx, the US Forest Service (1965) describes a series expansion, 
neglecting products of differentials, to obtain the following expression for the shear flow 
for the case in Figure 4b): 
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With reference to Figure 4a), Timoshenko (1956) starts by considering the specific case 
of a cantilever with vertical point load at the free end where x=0 and writes equilibrium 
as 
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Cancelling b and dx and evaluating the integrals yields 
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Timoshenko (1956) then generalizes that expression to accommodate any variation in the 
bending moment, which gives the following formula for the shear flow for the case in 
Figure 4a): 
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Recognize that V=dM/dx and consider first, for reference, a prismatic beam, i.e., dh/dx=0. 
In that case, Eqs. (8) and (11) both give zero shear flow on the upper and lower edges, as 
boundary conditions on the shear flow dictate. Furthermore, for both formulas, the shear 
stress in the middle of the cross-section is 3V/2A, as known from basic mechanics. 
Beyond that, observations are made in a separate example document posted near this one, 
considering a single-tapered beam. Vertical stresses, given in the U.S. Forest Service 
paper, are not studied here, for now.  
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