
Stiffness vs. Flexibility Matrix
Much of computational structural analysis is centred around the stiffness method and the principle of 
virtual displacements. That implies that the displacements, including rotations, are the primary 
unknowns. However, from fundamental structural analysis we know that there are two options: The 
displacement-based approach and the force-based approach. This document outlines some of the 
differences between those two approaches in a matrix structural analysis context. In the displacement-
based approach, the governing equations for the final structural degrees of freedom are equilibrium 
equations: Kf uf = Ff , where Kf  is the final stiffness matrix. In the force-based approach, the 
governing equations are compatibility equations: uf ,0 + ff Ff =, where ff  is the final flexibility matrix 
and uf ,0 is the displacements due to the external loads, temperature changes, settlements, or whatever 
is acting on the structure. The focus in this document is on the assembly of Kf  and ff  using 
transformation matrices. The process is exemplified utilizing the figure shown here:
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Stiffness Matrix
This is the “well known” approach from the computational stiffness method document. The Global 
element configuration is omitted here, because the element orientation is horizontal. Also, the All 
configuration is omitted for simplicity, going directly from the Local to the final configuration. 
Letting the element length be L, the transformation from the Basic to the Local configuration reads
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Tbl = -
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Tbl // MatrixForm
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which yields:

The transformation from the Local to the Final configuration is here established, column-by-column, 
in the manner described in the document on the computational stiffness method:

Tlf = {{0, 0}, {0, 0}, {1, 0}, {0, 1}};
Tlf // MatrixForm

0 0
0 0
1 0
0 1

which yields:

Because the Basic stiffness matrix is...

Kb = 
4 EI

L
,
2 EI

L
, 

2 EI

L
,
4 EI

L
;

Kb // MatrixForm

4 EI
L

2 EI
L

2 EI
L

4 EI
L

which yields:

... the final stiffness matrix is:

Kf = Tlf(.Tbl(.Kb.Tbl.Tlf;
Kf // MatrixForm

12 EI
L3

6 EI
L2

6 EI
L2

4 EI
L

which yields:

Using the fact that the flexibility matrix is the inverse of the stiffness matrix, the above derivations 
leads to the following final flexibility matrix:
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ff = Inverse[Kf];
ff // MatrixForm

L3

3 EI
- L2

2 EI

- L2

2 EI
L
EI

which yields:

Flexibility Matrix
In the context of matrix structural analysis, the flexibility method is less well known. The starting 
point here is the Basic flexibility matrix, derived by the principle of virtual forces, containing 
fij=displacement along DOF i due to a unit force along DOF j. It reads, for the Basic element 
configuration:

fb = 
L

3 EI
, -

L

6 EI
, -

L

6 EI
,

L

3 EI
;

fb // MatrixForm

L
3 EI

- L
6 EI

- L
6 EI

L
3 EI

which yields:

In order to obtain the Final flexibility matrix, we must omit the Local element configuration. That is 
because the Local configuration is NOT statically determinate; if we apply a unit force along any 
given DOF, then the structure will simply accelerate. That is, because we cannot do equilibrium in the 
unstable Local element configuration, we go directly from the statically determinate Basic 
configuration to the statically determinate Final configuration. The fundamental idea when 
establishing the force transformation matrix Tbf ,tilde is the same as when we establish the 
displacement transformation matrix Tbf : set degrees of freedom in the configuration “above” equal to 
one, one at a time. Setting Final DOF number 1 equal to one gives a bending moment diagram with 
zero at the tip and a value equal to L at the left-hand side base, with tension at the bottom. In order to 
make the element have the same force pattern in the Basic element configuration, we set the first 
Basic DOF equal to one. Similarly, the second column of Tbf ,tilde is obtained by setting the rotation-
DOF in the Final configuration equal to one, implying a constant bending moment diagram with unit 
value with tension at the top. That force pattern is obtained by setting the first Basic DOF equal to -1 
and the second Basic DOF equal to 1:
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Tbftilde = {{L, -1}, {0, 1}};
Tbftilde // MatrixForm

L -1
0 1

which yields:

That gives the flexibility matrix

ff = Tbftilde(.fb.Tbftilde;
ff // MatrixForm

L3

3 EI
- L2

2 EI

- L2

2 EI
L
EI

which yields:

That matches what was obtained above with the displacement-based approach followed by the 
inversion of the stiffness matrix. 
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