
Ritz Cantilever with Axial Force
The objective in this document is the same as another document posted on this website: to study a 
cantilever subjected to both lateral and axial force. The first case involves axial compression, as 
shown here:

F

L, EI

P

Input values
The following parameter values, given in N and mm, are employed in the subsequent plots. λ is the 
fraction of the axial force relative to the buckling load. The cross-section is circular, made of steel, 
with diameter d:

values1 = P -> λ
π2 EI

(2 L)2
;

values2 = EI -> 200000
π d4

64
;

values3 = {L -> 5000, d -> 50, F -> 100};

For reference, the static displacement due to the lateral force alone is, in mm:

F L3

3 EI
/. values1 /. values2 /. values3 // N

67.9061which yields:

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Examples Updated March 21, 2024 Page 1



Energy Method
The problem is here addressed by an energy formulation and Ritz functions instead of the differential 

equation. In his book on Structural Mechanics, Hjelmstad nicely explains why 1 - Cos n π x
2 L

 is 

slightly better than Sin n π x
2 L

 for approximating the transverse displacement. For that reason, the 

Ritz functions are:

wn = an 1 - Cos
n π x

2 L
 ;

The internal strain energy is:

U = 
0

L 1

2
EI D[D[wn, x], x]2 ⅆx;

The potential energy in the axial force is introduced via Green’s strain: 

HfromP = P 
0

L 1

2
D[wn, x]2 ⅆx;

The potential energy in the lateral force is:

HfromF = F (wn /. x -> L);

The total energy is:

Π = U - HfromF - HfromP;

The principle of minimum potential energy dictates that the variation of the functional Π must be zero:

δΠ = D[Π, an];

sol = Solve[δΠ == 0, an];

Sum over all Ritz functions (notice that n is 1, 3, 5, etc.)

w = TotalTable an 1 - Cos
n π x

2 L
 /. sol, {n, 1, 21, 2};

The tip displacement is, at half the buckling load, for comparison with values presented earlier:
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w /. x -> L /. values1 /. values2 /. values3 /. λ -> 0.5

{134.88}which yields:

Plot the displacement for a few axial force levels, observing the significant increase in lateral 
displacement as the axial force approaches the buckling load:

Plot[{w /. values1 /. values2 /. values3 /. λ -> {0, 0.25, 0.5, 0.8}},
{x, 0, L /. values3}, PlotStyle → Black]
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which yields:

Plot the bending moment for the same axial force levels, in kNm:

M = EI D[D[w, x], x] 10-6;
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Plot[M /. values1 /. values2 /. values3 /. λ -> {0, 0.25, 0.5, 0.8},
{x, 0, L /. values3}, PlotStyle → Black]
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which yields:

In comparison, the bending moment caused solely by the lateral force is, in kNm:

F L 10-6 /. values3 // N

0.5which yields:

Convergence of the Solution
Now reconsider the axial compression case, first with a single cosine function as the Ritz 
approximation:

w1 = TotalTable an 1 - Cos
n π x

2 L
 /. sol, {n, 1, 1, 2};

Then two terms:

w2 = TotalTable an 1 - Cos
n π x

2 L
 /. sol, {n, 1, 3, 2};

Then three terms:

w3 = TotalTable an 1 - Cos
n π x

2 L
 /. sol, {n, 1, 5, 2};

Those solutions are here compared with the previous solution, which employed 10 terms, for the case 
of compression equal to half the buckling load:
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Those solutions are here compared with the previous solution, which employed 10 terms, for the case 
of compression equal to half the buckling load:

Plot[{w1, w2, w3, w} /. values1 /. values2 /. values3 /. λ -> 0.5,
{x, 0, L /. values3}, PlotStyle → {Black, Thin}]
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which yields:

The same is done for the corresponding bending moment values, again in kNm:

M1 = EI D[D[w1, x], x] 10-6;
M2 = EI D[D[w2, x], x] 10-6;
M3 = EI D[D[w3, x], x] 10-6;
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Plot[{M1, M2, M3, M} /. values1 /. values2 /. values3 /. λ -> 0.5,
{x, 0, L /. values3}, PlotStyle → {Black, Thin}]
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which yields:

Tension
Now consider the cantilever shown below, where the lateral force, F, is specified as a fraction of the 
axial force, P, having the effect of keeping the angle of the single load shown below constant.  

That redefinition is captured in the following revised input:

values3 = {L -> 5000, d -> 50, F -> λ 100};

Repeat the calculations, but with flipped sign on the potential energy related to the axial force, in 
order to study tension instead of compression: 
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Repeat the calculations, but with flipped sign on the potential energy related to the axial force, in 
order to study tension instead of compression: 

Π = U - HfromF + HfromP;

Principle of minimum potential energy:

δΠ = D[Π, an];

sol = Solve[δΠ == 0, an];

Sum over Ritz functions:

w = TotalTable an 1 - Cos
n π x

2 L
 /. sol, {n, 1, 21, 2};

It no longer makes sense to plot solutions for λ=0, because that means zero load. However, we can 
now increase the load beyond λ=1 because the axial force has a stabilizing effect, in contrast with the 
compressive buckling situation. The displacements plotted below shows that the lateral displacement 
increases when the load is initially applied. However, as the load increses beyond reasonable values, 
the column straightens and the slope of its tip aligns with the slope of the external load.

Plot[w /. values1 /. values2 /. values3 /. λ -> {0.25, 0.5, 1, 2, 5, 7, 9},
{x, 0, L /. values3}, PlotStyle → Black]
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which yields:

That straightening of the column, with curvature concentrating at its base, is reflected in the 
corresponding moment diagrams: 
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M = EI D[D[w, x], x] 10-6;

Plot[M /. values1 /. values2 /. values3 /. λ -> {0.25, 0.5, 1, 2, 5, 7, 9},
{x, 0, L /. values3}, PlotStyle → Black]
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which yields:
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