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Plastic Capacity Examples 
Examples are provided in this document to demonstrate the hand-calculation of plastic 
capacities of various problems. Amongst several options, the subscript u for “ultimate” is 
selected to denote the plastic capacity. That means the ultimate force a structure can carry 
is Fu, qu, etc. and the plastic axial and moment capacity of a cross-section is Nu and Mu, 
respectively. Also note the preface d in the symbol for internal and external work: dWint, 
dWext. This is not virtual work; rather, it is incremental work carried out after “full” yielding 
occurs.  

Beam with Point Load 
Consider the simply supported beam in Figure 1. The objective is to determine the capacity 
of the beam to carry the point load, F, when the plastic moment capacity of the cross-
section, Mu, is assumed to be known. The upper-bound theorem of plastic capacity analysis 
is suitable for this type of problem. That means we start by assuming the location of plastic 
hinges; the choice of a midspan hinge is shown by a solid circle in Figure 1.  

 
Figure 1: Beam with point load. 

Next, the expression for internal incremental plastic work is established, observing that the 
total rotation at the plastic hinge is 2q: 

 𝑑𝑊!"# = 2𝜃 ∙ 𝑀$ (1) 
The expression for the external incremental plastic work employs the kinematic 
relationship D=q (L/2): 

 𝑑𝑊%&# = 𝐹 ∙ 𝜃 ∙
𝐿
2 (2) 

Setting dWint=dWext and solving for F yields the plastic capacity of the beam to carry that 
load:  

 𝐹$ =
4𝑀$

𝐿  (3) 
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Beam with Distributed Load 
Consider the fixed-fixed beam in Figure 2. Towards the objective of determining the 
capacity, qu, of the beam to carry distributed load, the shown mechanism is assumed. It 
involves three plastic hinges; the rotation is q for two of them and 2q for the middle hinge. 
That means the internal incremental plastic work is  

 𝑑𝑊!"# = (2𝜃 + 𝜃 + 𝜃) ∙ 𝑀$ (4) 
The external work is determined by considering the two sides, on either side of the midspan 
hinge, separately. That is the reason for the factor 2 in the following formula. On each side, 
the distributed load is collected into a resultant that conducts work over a displacement that 
is half of D. That means the external work is 

 𝑑𝑊%&# = 2 ∙ .𝑞 ∙
𝐿
20 .

1
2 ∙
𝐿
2 ∙ 𝜃0 (5) 

Setting dWint=dWext and solving for q yields the plastic capacity of the beam to carry that 
load:  

 𝑞$ =
16𝑀$

𝐿'  (6) 

 
Figure 2: Beam with distributed load. 

Frame 
Consider the frame in Figure 3, noting that the horizontal beam has twice the plastic cross-
section capacity of the columns; i.e., the plastic capacity of the beam is 2Mu. Adopting the 
upper-bound theorem, the objective is to determine the capacity of the frame to carry the 
reference load, F, which acts at two locations, as shown in Figure 3. To that end, the upper-
bound theorem of is adopted, followed by the assumption of the deformation mechanism 
sketched in Figure 3. For this mechanism, the incremental internal plastic work is 

 𝑑𝑊!"# = (2𝜃 + 𝜃 + 𝜃) ∙ 𝑀$ + 2𝜃 ∙ 2𝑀$ (7) 

The external work done by the two loads is 

 𝑑𝑊%&# = 𝐹 ⋅ (0.6𝐿 ∙ 𝜃) + 2𝐹 ⋅ .
𝐿
2 ∙ 𝜃0 (8) 

Setting dWint=dWext and solving for F yields the plastic capacity of the frame:  

L/2 L/2

qq D
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 𝐹$ =
5𝑀$

𝐿  (9) 

Note that this is the capacity of the frame associated with the specific deformation 
mechanism sketched in Figure 3. In practical situations, we often need to try a variety of 
different mechanisms. Because this is an application of the upper-bound theorem, we keep 
only the lowest capacity value. That value is either correct, or too high if we have not found 
the correct mechanism. In other words, the value is either correct or unconservative.  

 
Figure 3: Frame. 

Cross-section 
Consider Figure 4, showing a rectangular cross-section with two stress blocks. In contrast 
to the previous examples, the lower-bound of plastic capacity analysis is here applied 
because that is more convenient at the cross-section level. To that end, the stress in the top 
half is compression; the stress in the bottom half is tension. Those stress blocks are 
postulated to take bending moment acting on the cross-section. Simple equilibrium of the 
resultants of the two stress blocks leads to the following plastic capacity of the cross-
section:  

 𝑀$ = 𝜎( ∙ .𝑏 ∙
ℎ
20 ∙

ℎ
2 (10) 

where sy is the yield stress of the material.  
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Figure 4: Cross-section. 

Isotropic Slab 
Consider the slab in Figure 5, which has an isotropic material. In other words, the material 
properties are the same in all directions. The slab is subjected to a uniformly distributed 
load, q, and the objective is to determine the plastic capacity value of that load.  

 
Figure 5: Slab. 

Applying the upper-bound theorem, the shown yield lines are assumed. The plastic moment 
of the cross-section, per unit length, is labelled m and the displacement at the middle of the 
slab is denoted D. At first glance it seems challenging to determine the work done along 
the inclined yield lines. However, decomposition facilitates the projection of that internal 
work onto the edges of the plate:  
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The external work is determined by first dividing the slab into the three segments shown 
in Figure 6. Next, the distributed load in each segment is collected into a resultant. The 
multiplication of the resultant with the displacement at that location yields the external 
work: 

 

 

(12) 

 

 
Figure 6: Slab segments. 

Setting dWint=dWext and solving for q yields the plastic capacity:  

 𝑞$ =
𝑚𝐿
𝑥 + 4𝑚
𝐿'
2 −

𝐿𝑥
6

 (13) 

To find the value of x that gives the minimum capacity we set 

 
𝑑𝑞$
𝑑𝑥 = 0 (14) 

and solve, which yields 

 𝑥 = 𝐿 =
√13 − 1

4 @ (15) 

Substituting that value of x into Eq. (13) yields 

 𝑞$ = 14.14 ∙
𝑚
𝐿' (16) 

Orthotropic Slab 
Consider a generic slab in the x-y plane and let the plastic moment capacity be mx about 
the x-axis and my about the y-axis. In the following, the notation mx = m and my = f m is 
employed. Projection of all rotations onto the x and y axes gives the internal work 

 
 

(17) 

where lx, ly = projection of the length of the yield line onto the x-axis and y-axis, 
respectively; qx = rotation of the slab segment about the x-axis; and qy = rotation of the slab 
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segment about the y-axis. Denoting by a the angle between the x-axis and the axis of 
rotation gives qx=q cos(a) and qy=q sin(a) where q is the rotation of each slab segment. 
That gives the following modified expression for the internal work: 

 
 

(18) 

where l is the total yield line length for the segment. 
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