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Cylindrical Shells 
The most basic case relevant for this document is a cylindrical pressure vessel that we 
imagine is infinitely long, and uniform in every way in that direction. In addition to 
constant pressure, those assumptions mean there are no disturbances from the cylinder 
ends; also, there are no reinforcing “belts” around the cylinder at any location. The 
problem is visualized in Figure 1. The following notation is employed: p=internal 
pressure, t=wall thickness, r=inner radius, s=hoop stress.  

 
Figure 1: Hoop stress. 

With that notation, vertical equilibrium of Figure 1 yields the basic hoop stress formula: 

 
 

(1) 

As an aside note, the longitudinal stress in the cylinder wall is obtained by considering 
the force ppr2 acting on the cylinder ends distributed over the area 2prt of the cylinder 
walls. That gives a longitudinal stress equal to pr/2t, which is half the hoop stress 
observed in Eq. (1). This is why spherical pressure vessels are optimal, and it is why 
sausages break along their longitudinal axis when you boil them.  

Non-uniform Cyclinders 
Another cylinder case is visualized in Figure 2. Here, the ends are considered as a 
restraint on the ability of the cylinder to displace radially. A restraining belt in the middle 
is also introduced, having the same effect. Furthermore, the pressure is non-uniform. This 
represents an extension of the considerations that led to the basic hoop stress formula in 
Eq. (1). In fact, the present case is an introduction to shell theory. Shells carry load in 
their plane, and also in the out-of-plane direction. As with any structural problem, 
equations of equilibrium, material law, and kinematic compatibility are established in 
order to determine the governing differential equation.  

Equilibrium Between External Load and Stress Resultants 
To that end, consider the stress resultants displayed in Figure 3. Carefully observe the 
subscripts on the bending moments; this notation differs from some other document 
posted on this website. Because of axial symmetry, dMf=0. Also, there is no net axial 
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force in the x-direction; Nx can be superimposed on the shell solution presented here. 
Moment equilibrium about the upper edge yields the well-known formula for shear in 
terms of moment: Vx=dMx/dx. Of greater interest is equilibrium in the radial direction. 
The resultant pressure acting on the infinitesimal portion of the cylinder wall visualized 
in Figure 3 is pressure times area, i.e., p×dx×(r×df). The cylinder wall is resisting that force 
by means of the net shear force dVx×(r×df) and also the hoop stress, denoted by the stress 
resultant Nf, which adds up to dx×Nf as a force resultant acting on that edge. Figure 4 
shows in red colour the radial component of dx×Nf, utilizing the fact that df in the 
geometry of the force polygon. In short, equilibrium in the radial direction reads 

 𝑑𝑉! ⋅ 𝑟 ⋅ 𝑑𝜙 + 𝑑𝜙 ⋅ 𝑁" ⋅ 𝑑𝑥 = 𝑝 ⋅ 𝑑𝑥 ⋅ 𝑟 ⋅ 𝑑𝜙 (2) 

Dividing through by dx×r×df yields 

 
 

(3) 

 
Figure 2: Nonuniform cylinder. 

 
Figure 3: Stress resultants. 

)(
d
d xp

r
N

x
Vx =+ f

fN

r

f

fN

xV

xx dVV + xx dMM +

xM

x

fM

ff dMM +

d



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Cylindrical Shells Updated March 21, 2024 Page 3 

 
Figure 4: Radial component of hoop stress resultant. 

Combined with the previously mention equation for Vx, Eq. (3) gives the result 

 
 

(4) 

Equilibrium Between Stress Resultants and Stress 
The axial force in the hoop direction in the cylinder wall is 

  (5) 

The bending moment about a vertical axis going through the cylinder wall is related to 
the axial as follows: 

 
 

(6) 

where t is an auxiliary axis in the r-direction, having its origin at the midpoint of the 
cylinder wall.  

Material Law 
For the shell problem considered in this document, the material law must address strain in 
the x-direction, ex, accounting for bending about a horizontal longitudinal axis. Also, the 
material law must address strain in the f-direction, i.e., ef from hoop stress in the cylinder 
wall. However, notice that ef does not account for any bending moment about a vertical 
axis; dMf=0 because of axial symmetry. The material law in the hoop direction is simply   

  (7) 

Our viewpoint now turns ninety degrees, for the consideration of bending about a 
horizontal axis following the circumference of the cylinder. That is associated with axial 
stress in the x-direction. Other vertical forces on the cylinder, i.e., acting in the x-
direction, can be superimposed onto this shell solution. To address the bending of the 
shell, the considerations are similar to that of a plate solution, addressed elsewhere on this 
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website. Because of the two-dimensional nature of the wall segment, Poisson’s ratio 
enters:  

 
 

(8) 

Following the “plane strain” paradigm for this two-dimensional problem, the strain the 
circumferential direction is set equal to zero, which does not interfere with the previously 
established material law for hoop stress: 

 
 

(9) 

Combining Eq. (8) and (9) gives the following stress-strain relationship in the x-direction, 
recognized from plate theory:  

 
 

(10) 

Kinematic Compatibility 
The strain in the circumferential direction, i.e., the hoop direction is 

 
 

(11) 

where w is the displacement in the radial direction. The strain due to bending about the x-
axis is, from basic beam theory:  

 
 

(12) 

Combining Equations 
Combination of equations for stress resultant, material law, and kinematic compatibility 
in the hoop-direction, i.e., combination of Eqs. (5), (7), and (11) yields 

 
 

(13) 

Combination of the same equations for the x-direction, i.e., Eqs. (6), (10), and (12) for the 
bending problem yields 

 
(14) 
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Equilibrium with the externally applied load, i.e., the pressure within the cylinder, is now 
introduced by substituting Eqs. (13) and (14) into Eq. (4), which gives 

 
 

(15) 

Interestingly, this differential equation has exactly the same form as that of a beam on an 
elastic foundation. Physically, this is understood by thinking of a vertical strip of the 
cylinder wall, supported by the hoop stress effect. In other words, the hoop stress acts as 
an elastic support of that strip of the cylinder wall. By defining  

 
 

(16) 

the differential equation takes the form 

 
 

(17) 

with 

 
 

(18) 

being the characteristic length known from the document on beams on elastic foundation, 
now for a cylinder. Further details about the solution are given in that document.   
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