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Computational Plastic Capacity 
Analysis 

Elsewhere on this website, documents are posted on hand calculation of plastic capacity 
of cross-sections, frames, and plates. There, the determination of the ultimate capacity of 
cross-sections, assuming the elastic-perfectly-plastic material model, is conducted by 
means of the lower-bound theorem. That is essentially an exercise in equilibrium. 
Conversely, the analysis of frames and plates applies the upper-bound theorem, and 
involves the assumption of plastic hinges for frames and yield lines for plates. This 
document describes an alternative to those hand calculation methods, following the 
computational approach described by Filippou & Fenves in their 2004 chapter in 
Bozorgnia and Bertero’s book Methods of Analysis for Earthquake-Resistant Structures, 
following work published by Livesley in 1975. This approach starts by formulating the 
relationship between the degrees of freedom of the structure and the degrees of freedom 
of each element in its basic configuration. From the document on the computational 
stiffness method, that relationship is, for an individual element: 

 𝐮! = 𝐓!"𝐓"#𝐓#$𝐮$ (1) 

where ub includes only the rotational degrees of freedom, and the “all” configuration is 
omitted. The reason for both those facts is that we avoid the inclusion of axial 
deformations, and as a result, axial yielding. In other words, this formulation focuses on 
yielding in the form of plastic hinges, not axial crushing. It is the exclusion of axial 
deformations that lead to the omission of the “all” configuration and the need to establish 
Tgf for each element, which requires special attention in computer implementations. That 
is because the input must reflect that the final degrees of freedom of the structure do not 
accommodate axial deformation. That is reflected in the Python code for computational 
plastic capacity analysis, posted near this document. For brevity, Eq. (1) is written 

 𝐮! = 𝐓!$𝐮$ (2) 

where Tbf=TblTlgTgf. Eqs. (1) and (2) represent kinematic compatibility. It is proven, via 
virtual work, in the document on the computational stiffness method, that equilibrium is 
represented by 

 𝐅%$ = 𝐓!$%𝐅! (3) 

i.e., simply involving the transpose of Tbf. As described by Filippou & Fenves, the plastic 
capacity problem can be formulated either in terms of equilibrium, i.e., Eq. (3), or 
equivalently, in terms of kinematic compatibility, i.e., Eq. (2). Both approaches give the 
same result. Consider the equilibrium approach, and recall that the previously presented 
equations are expressed for a single element. The matrices 𝐓!$%  for all elements are now 
stacked in the following manner: 
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 𝐅%$ = &𝐓!$,'% , 𝐓!$,(% , 𝐓!$,)% , ⋯ )
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= 𝐓!$,*+,-./0% 𝐅%!,*+,-./0 (4) 

where the subscript “stacked” is attached to the larger stacked matrix and vector. The 
matrix 𝐓!$,*+,-./0%  connects the degrees of freedom of the structure to the basic degrees of 
freedom in all elements. Stated differently, and more appropriate for the equilibrium 
approach, 𝐓!$,*+,-./0%  connects the forces in the structure to all basic element forces. 
Equilibrium between externally applied loads along the final structural degrees of 
freedom and the basic element forces dictates that the external forces equals the internal 
forces, i.e., 𝐅%$, which means that 

 𝜆 ⋅ 𝐅1/$ = 𝐓!$,*+,-./0% 𝐅%!,*+,-./0 (5) 

where l=load factor and Fref=reference load pattern. Interestingly, Eq. (5) can be 
regarded as a constraint in a linear programming optimization problem. To understand 
this, consider the following vector of unknowns: x={l, 𝐅%!,', 𝐅%!,(, 𝐅%!,), …}T, i.e., with the 
load factor prepended to the vector of basic element forces. The solution to a linear 
programming problem that maximizes l subject to the equilibrium equality constraint in 
Eq. (5), and also to the inequality constraint that the absolute value of any basic element 
force cannot exceed the plastic capacity of the cross-section, Mu, gives the plastic 
capacity of the structure, in terms of l, as well as the identification of the member ends 
that experience yielding at that load, i.e., the “mechanism,” in terms of values of 𝐅%!,', 
𝐅%!,(, 𝐅%!,),… This is shown in an example posted near this document, where it is also 
visualized that the columns of 𝐓!$,*+,-./0%  identify the independent plastic mechanisms of 
the structure. The number of mechanisms equal the number of final degrees of freedom 
of the structure, and it is the displacement degrees of freedom that give the most relevant 
mechanisms. The solution to the linear programming problem often consists of a 
combination of the independent mechanisms.  
 

 
 


