
Cantilever with Axial Force
The objective in this document is to study the deflection and curvature in a cantilevered beam 
subjected to both lateral and axial force. As shown in the figure, the axial force is either tension or 
compression; both cases are considered. The first case involves axial compression, as shown here:

F

L, EI

P

Input values
The following parameter values, given in N and mm, are employed in the subsequent plots. λ is the 
fraction of the axial force relative to the buckling load. The cross-section is circular, made of steel, 
with diameter d:

values1 = P -> λ
π2 EI

(2 L)2
;

values2 = EI -> 200000
π d4

64
;

values3 = {L -> 5000, d -> 50, F -> 100};

For reference, the static displacement due to the lateral force alone is, in mm:

F L3

3 EI
/. values1 /. values2 /. values3 // N

67.9061which yields:
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Compression
In the absence of distributed load, a second-order differential equation is an appropriate model, as 
described in the first several pages of Timoshenko & Gere’s book entitled Theory of Elastic Stability. 
That differential equation essentially states that M=EI w”, where the bending moment has 
contributions from both F and P:

EI w'' = F L 1 - x
L
 + P (w[L] - w[x])

 
Observe that the right-hand side contains the displacement at the tip of the cantilever. That is 
awkward, because that requires the solution to the differential equation. It can be solved iteratively, 
but another approach is adopted here. Following the previously mentioned Timoshenko book, the 
origin of the x-axis starts at the tip of the cantilever and runs downwards towards the base. In that 
case, the differential equation reads (notice minus sign, needed because w(x) comes out 
negative):

EI w'' = F x - P w[x]

The boundary conditions are zero displacement at x=0 and zero rotation at x=L. That differential 
equation is here solved using a built-in function in Mathematica:

sol = DSolve[{EI w''[x] == F x - P w[x], w[0] == 0, w'[L] == 0}, w, x];

The tip displacement is:

wTip = w[x] /. sol[[1]] /. x -> L;

The value of that displacement for some λ-values are:

-wTip /. sol /. values1 /. values2 /. values3 /. λ -> {0.01, 0.25, 0.5, 0.8}

{{68.5831, 90.2389, 134.881, 335.686}}which yields:

Compare those tip displacements with the solution obtained via matrix structural analysis, including 
both the “Big P-delta” and “small P-delta” effects. This is here done by applying static condensation 
to remove the rotational degree of freedom at the tip, without locking it:
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K11 =
12 EI

L3
-
6 P

5 L
;

K12 = -
6 EI

L2
+

P

10
;

K22 =
4 EI

L
-
2 P L

15
;

Kcond = K11 -
K122

K22
;

F

Kcond
/. values1 /. values2 /. values3 /. λ -> {0.01, 0.25, 0.5, 0.8}

{68.583, 90.1884, 134.415, 328.119}which yields:

A good match is observed, except for very large axial force values. Next, consider a plot of the 
displacement along the column, remembering that x=0 is the top, i.e., tip of the column:

Plot[w[x] - wTip /. sol /. values1 /. values2 /. values3 /.
λ -> {0.01, 0.25, 0.5, 0.8}, {x, 0, L /. values3}, PlotStyle → Black]
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which yields:

The bending moment at the base of the column, in kNm, for the case of zero axial load serves as a 
reference for the next plot:
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10-6 F L /. values3 // N

0.5which yields:

The bending moment for the same axial force levels, in kNm, confirms the increased suffering of the 
column as the axial compressive force increases:

M = 10-6 EI D[D[w[x] /. sol, x], x];

Plot[M /. values1 /. values2 /. values3 /. λ -> {0.01, 0.25, 0.5, 0.8},
{x, 0, L /. values3}, PlotStyle → Black]
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which yields:

Notice that the bending moment diagram from the solution to the differential equation can be 
calculated in two equivalent ways: 

Mequil = 10-6 (F x - P w[x]) /. sol;

Msoln = 10-6 EI D[D[w[x] /. sol, x], x];
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Plot[{Mequil /. values1 /. values2 /. values3 /. λ -> 0.5,
Msoln /. values1 /. values2 /. values3 /. λ -> 0.5},
{x, 0, L /. values3},
PlotStyle → {{Black, Thin}, {Black, Dashed}},

PlotLegends →

Placed[
LineLegend[{"M from equilibrium", "M from differentiating w(x)"}],
{Left, Top}]]

M from equilibrium

M from differentiating w(x)
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which yields:

Constant Inclined Tension
Now consider a case in which the lateral force, F, is specified as a percentage of the axial force, 
which is in tension. The result of this setup is that the orientation of the total resultant force remains 
constant, as shown in this figure:
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The differential equation now changes sign of the axial force term, because P is now in tension:

sol = DSolve[{EI w''[x] == F x + P w[x], w[0] == 0, w'[L] == 0}, w, x];

The revised input to accommodate the variation in F is:

values3 = {L -> 5000, d -> 50, F -> λ 100};

Thip displacement serves as a reference point for the subsequent plot:

wTip = w[x] /. sol[[1]] /. x -> L;

For λ=0.25, that displacement is:

Abs[wTip] /. values1 /. values2 /. values3 /. λ -> 0.25

13.6244which yields:

It no longer makes sense to plot solutions for λ=0, because that means zero load. However, we can 
now increase the load beyond λ=1 because the axial force has a stabilizing effect, in contrast with the 
compression case. The displacements plotted below shows that the lateral displacement increases 
when the load is initially applied. However, as the load increases beyond reasonable values, the 
column straightens and the slope of its tip aligns with the slope of the external load.
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Plot[w[x] - wTip /. sol /. values1 /. values2 /. values3 /.
λ -> {0.25, 0.5, 1, 2, 5, 7, 9}, {x, 0, L /. values3}, PlotStyle → Black]
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which yields:

That straightening of the column, with curvature concentrating at its base, is reflected in the 
corresponding moment diagrams: 

Mequil = 10-6 (F x + P w[x]) /. sol;

Msoln = 10-6 EI D[D[w[x] /. sol, x], x];
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Plot[
{Mequil /. values1 /. values2 /. values3 /. λ -> {0.25, 0.5, 1, 2, 5, 7, 9},

Msoln /. values1 /. values2 /. values3 /.
λ -> {0.25, 0.5, 1, 2, 5, 7, 9}},

{x, 0, L /. values3},
PlotStyle → {{Black, Thin}, {Black, Dashed}},

PlotLegends →

Placed[
LineLegend[{"M from equilibrium", "M from differentiating w(x)"}],
{Left, Top}]]
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which yields:

Tapered Beam
Now consider a tapered version of the cantilever, with the diameter, d, varying linearly as shown in 
this figure:
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The following revised input accommodates that tapering:

values1 = F -> λ 100, P -> λ
π2 EI

(2 L)2
/. d -> dTip;

values2 = EI -> 200000
π d4

64
;

values3 = d -> dTip + (dBase - dTip)
x

L
;

values4 = {L -> 5000, dTip -> 50};

Let the bending stiffness at the top of the column be EI1:

sol = DSolve[{(EI /. values2 /. values3 /. values3) w''[x] == F x + P w[x],
w[0] == 0, w'[L] == 0}, w, x];

Thip displacement serves as a reference point for the subsequent plot:

wTip = w[x] /. sol[[1]] /. x -> L;

At nearly no tapering, that value is, for reference:

Abs[wTip] /. sol /. values1 /. values2 /. values3 /. values4 /. λ -> 0.5 /.
dBase -> 51 /. x -> L /. values4

{21.3006}which yields:
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Diminishing displacement for different degrees of tapering, at constant force level:

Plot[w[x] - wTip /. sol /. values1 /. values2 /. values3 /. values4 /.
λ -> 0.5 /. dBase -> {51, 60, 70, 80, 90, 100}, {x, 0, L /. values4},

PlotStyle → Black]
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which yields:

Bending moment diagram for different degrees of tapering, at constant force level; notice how the 
bending moment at the base diminishes with increasing cross-section diameter there, but the shape of 
the diagram changes:

Mequil = 10-6 (F x + P w[x]) /. sol;

Msoln = 10-6 EI D[D[w[x] /. sol, x], x];
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Plot[{Mequil /. values1 /. values2 /. values3 /. values4 /. λ -> 0.5 /.
dBase -> {51, 60, 70, 80, 90, 100},

Msoln /. values1 /. values2 /. values3 /. values4 /. λ -> 0.5 /.
dBase -> {51, 60, 70, 80, 90, 100},

Msoln /. values1 /. values2 /. values3 /. values4 /. λ -> 0.5 /.
dBase -> 200}, {x, 0, L /. values4},

PlotStyle → {{Black, Thin}, {Black, Dashed}, Red},
PlotLegends →

Placed[
LineLegend[{"M from equilibrium", "M from differentiating w(x)",

"Large tapering"}], {Left, Top}]]
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which yields:

In some situations, an increase in the stiffness in a region of a structure may attract more internal 
force to that region. That is not true at the base of this cantilever, when tapering is considered. 
However, it is the case further up the column; the moment in the upper half of the cantilevered 
column can increase substantially due to the increase in cross-section at the bottom, as highlighted by 
the red line in the figure above. Notice also how an increased force level affects the bending moment 
diagram:
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Plot[{Mequil /. values1 /. values2 /. values3 /. values4 /. λ -> 3.0 /.
dBase -> {51, 60, 70, 80, 90, 100},

Msoln /. values1 /. values2 /. values3 /. values4 /. λ -> 3.0 /.
dBase -> {51, 60, 70, 80, 90, 100},

Msoln /. values1 /. values2 /. values3 /. values4 /. λ -> 3.0 /.
dBase -> 200}, {x, 0, L /. values4},

PlotStyle → {{Black, Thin}, {Black, Dashed}, Red},
PlotLegends →

Placed[
LineLegend[{"M from equilibrium", "M from differentiating w(x)",

"Large tapering"}], {Left, Top}]]
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which yields:

Also, keep in mind that the increasing stiffness at the base, from increased tapering, makes the 
cantilever overall stiffer. In turn, that may attract more lateral force, which could indeed make the 
moment at the base larger than without tapering. 
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