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Cables and the Catenary Shape 
Many situations exist in which a cable represents an efficient means of carrying loads. 
Some conceptual examples are shown in Figure 1. The application dictates the 
assumptions made about the cable: 

• Neglect axial deformations in the cable? 
• Neglect bending stiffness of the cable? 
• Neglect the gravity load from the weight of the cable? 
• Allow a large sag of the cable compare to the span width?  

Several of those choices are explored in this document. Depending on the assumptions, 
the cable may or may not form the special catenary shape, which is associated with a 
cable with self-weight hanging freely. Some applications, assumptions, and consequences 
are here listed, with reference to Figure 1: 

a) Neglect axial deformations, bending stiffness, and cable weight and consider only 
point loads, analyzed by equilibrium. Resulting shape: Straight lines. 

b) Neglect axial deformations and bending stiffness, but include a uniformly 
distributed load, which may represent the cable weight, because here the sag is 
assumed to be very small. Resulting shape: Parabola. 

c) Neglect axial deformations, bending stiffness, and cable weight, but include a 
uniformly distributed load and potentially large sag, including the possibility that 
the supports are not aligned along a horizontal line. Resulting shape: Parabola.  

d) Neglect axial deformations and bending stiffness, but not the cable weight, and 
include potentially large sag, including the possibility that the supports are not 
aligned along a horizontal line. Resulting shape: Catenary.  

e) Include bending stiffness and cable weight, and possibly axial deformations, in 
conjunction with potentially large sag; this is a more advanced theory with 
boundary effects, not addressed in this document.  

 
Figure 1: Cables, with c) and d) representing the catenary shape. 
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Case (a): Straight Lines 
Equilibrium for cable that forms straight lines in the face of point loads is not considered 
in this document at this time.  

Case (b): Parabola 
In this case, visualized in Figure 1b), the sag is so small that we essentially consider the 
axial force in the cable, T, to be constant along the x-axis. That allows us to focus on 
equilibrium in the vertical direction, which is done in Figure 2. Notice that the slope, 
dy/dx, is negative on the left-hand side, and also that the slope changes from x to x+dx. 
Just like in the document on cylindrical shells, it is that change in slope that creates the 
vertical force resultant from T to resist the force q×dx: 
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⋅ 𝑑𝑥 = 𝑞 ⋅ 𝑑𝑥 (1) 

That second-order differential equation is simply integrated twice, leading to a second-
order equation for the cable, y(x), with two integration constants. However, beyond 
suggesting a parabolic shape of the cable, the small sag and constant T limits the 
applicability of this solution.  

 
Figure 2: Vertical equilibrium. 

Case (c): Parabola 
Now consider a cable in which we neglect axial deformation, bending stiffness, and 
gravity load of the cable. However, we allow for the possibility of large sag and different 
vertical coordinates of the end points of the cable. However, the load must be vertical and 
uniformly distributed along the x-axis, as indicated in Figure 1c) and Figure 3. The 
objective in the following derivations is to derive an equation for y(x), i.e., the vertical 
position of the cable for any given horizontal position, x. The derivations commence with 
equilibrium considerations. With reference to Figure 3, first consider the x-direction: 
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 !𝐹! = −𝑇 ⋅ cos(𝜃) + (𝑇 + 𝑑𝑇) ⋅ cos(𝜃 + 𝑑𝜃) = 0 (2) 

Next, consider the y-direction: 

 !𝐹" = −𝑇 ⋅ sin(𝜃) − 𝑞 ⋅ 𝑑𝑥 + (𝑇 + 𝑑𝑇) ⋅ sin(𝜃 + 𝑑𝜃) = 0 (3) 

Then, moment equilibrium about A of Figure 3: 

 !𝑀# = −𝑇 ⋅ cos(𝜃) ⋅ 𝑑𝑦 + 𝑇 ⋅ sin(𝜃) ⋅ 𝑑𝑥 = 0 (4) 

 
Figure 3: Equilibrium. 

Each of those three equations are now rewritten. First, consider Eq. (2), which is 
reorganized to read 

 −𝑇 ⋅ cos(𝜃) + 𝑇 ⋅ cos(𝜃 + 𝑑𝜃) + 𝑑𝑇 ⋅ cos(𝜃 + 𝑑𝜃) = 0 (5) 

Then reorganize it to read 

 𝑇 ⋅ (cos(𝜃 + 𝑑𝜃) − cos(𝜃)) + 𝑑𝑇 ⋅ cos(𝜃 + 𝑑𝜃) = 0 (6) 

Then divide through by dx in order to obtain 

 𝑇 ⋅
cos(𝜃 + 𝑑𝜃) − cos(𝜃)

𝑑𝑥 +
𝑑𝑇
𝑑𝑥 ⋅ cos

(𝜃 + 𝑑𝜃) = 0 (7) 

Then recognize that dq is small, which means that Eq. (7) becomes 

 𝑇 ⋅
𝑑(cos(𝜃))

𝑑𝑥 +
𝑑𝑇
𝑑𝑥 ⋅ cos

(𝜃) = 0 (8) 

By the product rule of differentiation, that is the same as 
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 𝑑(𝑇 ⋅ cos(𝜃))
𝑑𝑥 = 0 (9) 

Similarly, equilibrium in the y-direction, expressed in Eq. (3), becomes 

 𝑑(𝑇 ⋅ sin(𝜃))
𝑑𝑥 = 𝑞 (10) 

Because sin(q)/cos(q)=tan(q), Eq. (4) represents the geometric relationship 

 
𝑑𝑦
𝑑𝑥 = tan(𝜃) (11) 

To summarize, Eqs. (2), (3), and (4) have been reorganized in order to become Eqs. (9), 
(10) and (11). Next, Eqs. (9) and (10) are integrated with respect to x, which yields  

 𝑇 ⋅ cos(𝜃) = 𝑐$ (12) 

and 

 𝑇 ⋅ sin(𝜃) = 𝑞 ⋅ 𝑥 + 𝑐% (13) 

where c1 and c2 are integration constants. Notice that, because Eq. (12) represents 
equilibrium in the x-direction, c1 is the force in the x-direction in the cable. Interestingly, 
it is constant and does not depend on x. On the same note, observe that c2 is the vertical 
force in the cable at x=0. Eqs. (12) and (13) are now combined by first solving for T in 
(12). The result is 

 𝑐$ ⋅
sin(𝜃)
cos(𝜃) = 𝑞 ⋅ 𝑥 + 𝑐% (14) 

Dividing through by c1 and employing sin(q)/cos(q)=tan(q) in conjunction with Eq. (11) 
yields 

 
𝑑𝑦
𝑑𝑥 =

𝑞 ⋅ 𝑥
𝑐$

+
𝑐%
𝑐$

 (15) 

Finally, Eq. (15) is integrated in order to obtain the sought expression for y(x): 

 𝑦(𝑥) =
1
2 ⋅
𝑞 ⋅ 𝑥%

𝑐$
+
𝑐%
𝑐$
⋅ 𝑥 + 𝑐& (16) 

where c3 is a new integration constant. Eq. (16) shows a parabolic shape of the cable, and 
the presence of three integration constants makes sense because three boundary 
conditions are required to specify a specific parabolic shape. The unknowns c1, c2, and c3 
can be obtained by specifying y(0), y(L), as well as the “sag,” i.e., the value of y at the 
location where dy/dx=0. Because the cable is inextensible, that shape will remain, 
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regardless of the magnitude of the load, q. In order to accommodate the third of the 
aforementioned boundary conditions, reconsider Eq. (15), which says that  

 𝑥 = −
𝑐%
𝑞  (17) 

when dy/dx=0. As a result, these are boundary conditions consistent with the 
aforementioned three y-values, with H1, H2, and H3 being the cable position at x equals 0, 
x equals zero slope, and x equals L, respectively: 

• y(0) = c3= H1 

• 𝑦 ;− '!
(
< = $

%
⋅
(⋅*+"!# ,

!

'$
− '!

'$
⋅ '!
(
+ 𝑐& = 𝐻% 

• 𝑦(𝐿) = $
%
⋅ (⋅-

!

'$
+ '!

'$
⋅ 𝐿 + 𝑐& = 𝐻& 

Solving those three equations in the three unknowns yields 

𝑐$ =
(𝐻$ − 2 ⋅ 𝐻% + 𝐻&) ⋅ 𝑞𝐿% + 2 ⋅ ?@(𝐻% − 𝐻$) ⋅ (𝐻% − 𝐻&)A ⋅ 𝑞% ⋅ 𝐿.

2 ⋅ (𝐻$ − 𝐻&)%
 (18) 

𝑐& =
(𝐻% − 𝐻$) ⋅ 𝑞𝐿% + ?@(𝐻% − 𝐻$) ⋅ (𝐻% − 𝐻&)A ⋅ 𝑞% ⋅ 𝐿.

(𝐻$ − 𝐻&) ⋅ 𝐿
 (19) 

𝑐& = 𝐻$ (20) 

Notice that Eqs. (18) and (19) cause problems when H1=H3, i.e., when the end points are 
at the same height. In that case, we know that the location of height H2 is at the midpoint, 
and the solution is 

𝑐$ =
𝑞 ⋅ 𝐿%

4(𝐻$ + 𝐻& − 2𝐻%)
 (21) 

𝑐& =
4𝐻%𝑞𝐿 − 3𝐻$𝑞𝐿 − 𝐻&𝑞𝑙
4(𝐻$ + 𝐻& − 2𝐻%)

 (22) 

𝑐& = 𝐻$ (23) 

Once c1, c2, and c3 for Eq. (16) have been determined directly from the input H1, H2, and 
H3, the axial force in the cable is determined from Eqs. (11) and (12). That entails first 
finding the orientation, q, at a given location: 

 𝜃 = atan E
𝑑𝑦
𝑑𝑥F (24) 



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Cables and the Catenary Shape Updated March 22, 2024 Page 6 

Thereafter, the axial force in the cable at that location is 

 𝑇 =
𝑐$

cos(𝜃) (25) 

This means that the distribution of axial force along the cable follows the slope of the 
cable, which is greatest at the end points and smallest where the cable has zero slope. In 
fact, the cable end that sits highest will be associated with the highest axial force, T. For 
the purposes of support design, recall from earlier that c1 is the horizontal force anywhere 
in the cable. Furthermore, observe in Eq. (13) that the vertical force at any point in the 
cable is the absolute value of 𝑞 ⋅ 𝑥 + 𝑐%. 

Case (d): Catenary 
When considering a cable sagging solely under its own weight, neglecting axial 
deformations and bending stiffness, the catenary shape will emerge, instead of a parabola. 
However, several equations from earlier are useful. First, let the vertical distributed load 
be rg×s, where r=mass density per unit length, g=acceleration of gravity, and s=axis 
measuring the length of a cable segment, with reference to Figure 4.  

 
Figure 4: Definition of the s-coordinate. 

Mimicking Eq. (12), horizontal equilibrium of the cable segment in Figure 4 yields 

 𝑇 ⋅ cos(𝜃) = 𝑇/ (26) 

Similarly, mimicking Eq. (13), vertical equilibrium yields, because To is horizontal: 

 𝑇 ⋅ sin(𝜃) = 𝜌𝑔 ⋅ 𝑠 (27) 

Solving Eq. (26) for T and substituting it into Eq. (27), recalling that sin(q)/cos(q)=tan(q), 
plus introducing the basic geometric relationship from Eq. (11) yields 

 
𝑑𝑦
𝑑𝑥 =

𝜌𝑔
𝑇/
⋅ 𝑠 (28) 

where it is convenient to define the constant 

q = 0

q

s

T
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 𝑐 =
𝑇/
𝜌𝑔 (29) 

so that Eq. (28) reads 

 𝑑𝑦
𝑑𝑥 =

𝑠
𝑐 (30) 

Thus far, these are replicas of developments in the previous section. The new 
developments relate to the coordinate s, which follows the cable.  For an infinitesimally 
short portion of the cable, Pythagoras suggests 

 𝑑𝑠% = 𝑑𝑥% + 𝑑𝑦% (31) 

with reference to Figure 5.  

 
Figure 5: Relating x, y, and s. 

Dividing through by dx2 yields 

 E
𝑑𝑠
𝑑𝑥F

%

= 1 + E
𝑑𝑦
𝑑𝑥F

%

 (32) 

Substitution of Eq. (30) yields 

 E
𝑑𝑠
𝑑𝑥F

%

= 1 + ;
𝑠
𝑐<

%
 (33) 

By letting the number one in Eq. (33) be written c2/c2, that equation is rewritten 

 E
𝑑𝑠
𝑑𝑥F

%

=
𝑐% + 𝑠%

𝑐%  (34) 

Taking the square root on both sides yields the governing differential equation for s: 

 𝑑𝑠
𝑑𝑥 =

√𝑐% + 𝑠%

𝑐  (35) 

Interestingly, that differential equation can be solved by rewriting it in terms of a new 
variable x. The parameter substitution that works is s=c×sinh(x). That means the 
derivative in Eq. (35) is 

dy

dx

ds
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𝑑𝑠
𝑑𝑥 =

𝑑𝑠
𝑑𝜉 ⋅

𝑑𝜉
𝑑𝑥 = 𝑐 ⋅ cosh(𝜉) ⋅

𝑑𝜉
𝑑𝑥 (36) 

because the derivative of sinh(x) is cosh(x). That leads to the following result when 
substituted into Eq. (35):  

 𝑐 ⋅ cosh(𝜉) ⋅
𝑑𝜉
𝑑𝑥 =

M𝑐% + (𝑐 ⋅ sinh(𝜉))%

𝑐 = M1 + (sinh(𝜉))% (37) 

where the last equality recognizes that c cancels. Because of the mathematical identity 

 
cosh(𝜉)

M1 + (sinh(𝜉))%
= 1 (38) 

Eq. (37) simplifies to  

 𝑑𝜉
𝑑𝑥 =

1
𝑐 (39) 

That is indeed a simpler differential equation than Eq. (35), solved by straightforward 
integration to give the solution 

 𝜉 =
𝑥
𝑐 + 𝑐% (40) 

where c2 is another integration constant that vanishes if we let the origin of the x and s 
axes coincide. In short, the solution to the differential equation in Eq. (35) is s=c×sinh(x) 
with x given in Eq. (40). In order to recover a solution in terms of y(x) instead of s(x), the 
relationship between y and s, provided earlier in Eq. (30), is brought to bear: 

 𝑑𝑦
𝑑𝑥 =

c ⋅ sinh ;𝑥𝑐<
𝑐 = sinh ;

𝑥
𝑐< (41) 

Integration gives the sought equation for the catenary shape: 

 𝑦 = c ⋅ cosh ;
𝑥
𝑐< (42) 

That is a neat equation, but it actually hard, but possible, to calibrate c together with a lift 
and shift of the hyperbolic cosine shape for given values H1, H2, and H3, as is done earlier 
in this document for the parabola. Instead, it is helpful to simply experiment with 
different parameter values and observing how the catenary appears. That said, it is of 
interest to calculate the axial force in the cable once a shape is set. To that end, consider 
the expression for the axial for T from Eq. (27), substitute s=c×sinh(x/c) and 
q=arctan(dy/dx) with dy/dx from Eq. (41) in order to obtain 
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𝑇 =
𝜌𝑔 ⋅ 𝑠
sin(𝜃) =

𝜌𝑔 ⋅ 𝑐 ⋅ sinh /𝑥𝑐1
sin(𝜃) =

𝜌𝑔 ⋅ 𝑐 ⋅ sinh /𝑥𝑐1

sin /arctan /sinh /𝑥𝑐111
= 𝜌𝑔 ⋅ 𝑐 ⋅ 61+ sinh2 7𝑥𝑐8 (43) 

which simplifies to T=rg×y because of the mathematical identity in Eq. (38). The product 
T×cos(q) gives the constant horizontal force component rg×c. The product T×sin(q) gives 
the vertical component rg×c×sinh(x/c). These results are demonstrated in an example 
posted near this document, including both a parabola and a catenary. Observe there that 
the constant c also represents the y-value of the catenary shape at x=0. 

 


