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Stress Transformations, Mohr’s 
Circle, Principal Stress 

The stresses acting in the coordinate directions can be transformed into other directions 
by rotating the infinitesimally small material particle that the stresses act on. When 
Augustin Cauchy invented the concept of stress in 1822, he included the equilibrium 
considerations for a tetrahedron that are necessary to rotate the stresses. In 1882, Otto 
Mohr presented a graphical approach for the same, now known as Mohr’s circle.  

2D Transformations 
Consider the plane stress state, in which only sxx, syy, and sxy=syxºtxy act. Suppose these 
coordinate stresses are known. The objective in this section is to determine the stress state 
in rotated configurations, for example to determine the minimum and maximum axial 
stresses, i.e., the principal stresses. Let q denote the angle (positive counter-clockwise) 
between the original coordinate system and the rotated one. The rotated plane is shown in 
Figure 1, where the stresses on the rotated plane are called s and t. 

 
Figure 1: Stresses on an inclined plane. 

By noting that cos(q)=ly/l and sin(q)=lx/l,  equilibrium in the direction of s yields 

  (1) 

The trigonometric identities cos2(q)=(1+cos(2q))/2, sin2(q)=(1+sin(2q))/2, and 
sin(2q)=2sin(q)cos(q) lead to the modified expression 
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  (2) 

Similarly, equilibrium in the direction of t yields: 

  (3) 

Eqs. (2) and (3) establish the basis for the transformation, i.e., rotation of stresses for two-
dimensional stress states. Extreme values of s and t, plus the corresponding angle q, are 
determined by setting the derivative of Eqs. (2) and (3) with respect to q equal to zero. 
However, the graphical approach known as Mohr’s circle is an appealing alternative to 
analytical derivations. 

Mohr’s Circle 
Eqs. (2) and (3) represent a circle in the s-t plane. To derive the expression for the 
circle, move the first term in the right-hand side of Eq. (2) to the left-hand side. Then 
square Eqs. (2) and (3) and add them. Upon using the trigonometric identity 
sin2(q)+cos2(q)=1 and cancelling terms, one obtains 

  (4) 

Comparing with x2+y2=r2 suggests that Eq. (4) is a circle in the s-t plane, shifted along 
the s-axis. The circle represented by Eq. (4) is called Mohr’s circle, after Christian Otto 
Mohr’s 1882 idea. All points on Mohr’s circle represents stress states at planes of 
different angle q.  

Conventions 
Mohr’s circle is ingenious. However, its practical use is challenging because of the 
variety of sign conventions that can be adopted. The concept of a “pole” may or may not 
be used, and special attention is needed for the sign of the shear stress. This document 
adopts a specific set of choices, of many available, and those choices are reflected in the 
following procedure to draw & use Mohr’s circle, with reference to Figure 2:  

1. For the problem at hand, take note of the coordinate stresses, sxx, syy, and txy, at a 
specific point in the solid.  

a. Throughout, let axial stress be positive in tension and negative in 
compression.  

b. The coordinate shear stress, txy, is positive if it is in the y-direction when 
acting on the surface whose normal vector is in the x-direction; this is the 
standard physical sign convention for shear stress. Note that, because 
tyx=txy, the coordinate shear stress tyx is positive if it is in the x-direction 
when acting on the surface whose normal vector is in the y-direction 

2. Calculate the radius and centre-shift of the circle implied by Eq. (4).  
3. Draw Mohr’s circle with the calculated radius and centre-shift, shown as a blue 

line in Figure 2.  
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4. On the circle, identify the points representing the stress state (sxx,txy) and the 
stress state (syy,txy), now noting the following shear stress conventions: 

a. The point (sxx,txy) should be plotted below zero if txy is positive; to 
remember this, think of txy being negative for clockwise shear in a beam 
laid along the x-axis. This point is red in Figure 2. 

b. The point (syy,txy) should be plotted above zero if txy is positive; this point 
is blue in Figure 2. 

5. From the point (sxx,txy), which is on the circle, draw a horizontal line until it 
intersects with the circle again; that point is the “pole;” alternatively, draw a 
vertical line from (syy,txy) if you want to study syy instead of sxx. 

6. From the pole point, draw lines in any direction; the point at which the line 
intersects the circle is a stress state with the following meaning: 

a. The orientation of the line is the orientation of the square on which 
stresses act.  

b. Only pay attention to the stress on the “near & far” edges of the square at 
the end of each line, as shown in Figure 2. 

c. If the intersection point is on the positive part of the s-axis then the axial 
stress on the near & far edges is tension. 

d. If the point on the circle is on the positive part of the t-axis then the shear 
stress on the near & far edges twists the square clockwise.  

 
Figure 2: Mohr’s circle in blue. 
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Looking at Mohr’s circle, the following observations are made: 

• The stress state (sxx, txy) is at a horizontal line from the pole point; this is the stress 
state that acts on the plane that has the x-axis as the surface normal 

• The stress state (syy, txy) is at a vertical line from the pole point; this is the stress state 
that acts on the plane that has the y-axis as the surface normal 

• Drawing the circle immediately reveals the maximum and minimum axial stress; they 
appear at locations, i.e., orientations with zero shear stress 

• The stress states with maximum shear stress are usually not associated with zero axial 
stress 

• When sxx=syy the blue point coincides with the red point 
Finally, for the 2D case, notice that’s Mohr’s circle implies that the maximum shear 
stress is 

  (5) 

3D Transformations 
Consider the stress traction t={tx ty tz}T that acts on an infinitesimal surface area with 
surface normal n={nx ny nz}T shown in Figure 3, where ti is the force in the i-direction. 
Let dA denote the area of the inclined surface on which the traction acts and let dAx 
denote the area of the side that has the negative x-axis as normal vector, and so forth. 
Equilibrium in the x-direction yields: 

  (6) 

To refine the expression, consider the relationship between the areas dA and dAi. Figure 3 
shows that dA=0.5hl and dAz=0.5hzl.  

 
Figure 3: Surface on which the stress traction acts. 
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Consequently,  

  (7) 

Dividing Eq. (6) by dA yields 
  (8) 

Repeating this exercise for all three axis-directions, and noting that sij=sji because of 
equilibrium considered later in this document, yields the equilibrium equations derived 
by Cauchy that relate a surface traction to the coordinate stresses: 

  (9) 

It is noted that, because n is a unit vector, the axial stress on a plane with normal vector n 
is the dot product between n and the stress traction: 

  (10) 

Subsequently, the Pythagorean theorem determines the largest shear stress on the plane: 

  (11) 

Principal Stresses 
The axial stress acting on a plane with zero shear stress is called a principal stress. The 
principal stresses will always include the minimum and maximum possible axial stresses. 
One way of determining principal stresses for a 2D stress-state is to draw Mohr’s circle. 
Referring to another document on Mohr’s circle, the points on the circle crossing the 
abscissa axis, i.e., the axial stress values at locations with zero shear stress, are principal 
stresses. The direction of the principal axes is identified by drawing a straight line from 
the pole point to the locations on the circle with zero shear stress. Mathematically, the 
maximum axial stress is 

  (12) 

and that the minimum axial stress is 

  (13) 

Here, s1 and s3 are symbols reserved for the maximum and minimum stress, 
respectively. This explains the inclusion of zero as a possibility in Eqs. (12) and (13). The 
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notation requires particular attention in 2D stress situations, where the out-of-plane stress 
is zero and, thus, often is s3. Another approach for determining principal stresses is to 
employ the following equilibrium, equation, derived by considering a tetrahedron in 
another document: 

  (14) 

For a plane with principal stresses the traction vector is parallel with the normal vector of 
that plane. That means there are no shear stresses on that plane and the traction is the 
scaled normal vector: 

  (15) 

This is an eigenvalue problem in the unknown scalar l, i.e., . Solutions 
are obtained by setting the determinant of the coefficient matrix equal to zero: 

  (16) 

where the stress invariants are defined as 
  (17) 

  (18) 

  (19) 

where vertical bars indicate the determinant operation. Upon solving for the eigenvalues, 
l, i.e., s1, s2, and s3, the eigenvectors yield the principal directions. The quantities I1, I2, 
and I3 are called stress invariants because they retain the same value regardless of the 
orientation of the coordinate system. These stress invariants are somewhat different from 
the stress invariants J1, J2, and J3 for the “deviatoric” stress tensor mentioned in the 
document on stress-based failure criteria and used in “J2 plasticity.”  
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