Inelastic Stick Model with P-delta

Consider a vertical cantilevered "stick model" of a column. It has a rotational spring at the bottom, and a lateral force F at the top, plus an axial force P at the top. The lateral displacement at the top is denoted Δ. The length of the column is L and its rotation is denoted θ.

Linear Elastic

Equilibrium:

$$
M=F L
$$

Material law:

$$
M=k_{\theta} \theta
$$

Kinematic compatibility:

$$
\Delta=\theta \mathrm{L}
$$

Combine the equilibrium, material law, and kinematic compatibility to obtain the governing $F-\Delta$ relationship:

$$
F=\frac{M}{L}=\frac{k_{\theta} \theta}{L}=\frac{k_{\theta}}{L^{2}} \triangle
$$

where the linear elastic stiffness is identified.

Linear Material with P-delta

Equilibrium of the displaced shape includes the P-delta effect:

$$
M=F L+P \triangle
$$

The other governing equations remain the same as for the linear elastic case. Again combining equilibrium, material law, and kinematic compatibility to obtain the governing $F-\Delta$ relationship yields:

$$
F=\frac{M}{L}-\frac{P}{L} \Delta=\frac{k_{\theta} \theta}{L}-\frac{P}{L} \Delta=\left(\frac{k_{\theta}}{L^{2}}-\frac{P}{L}\right) \Delta
$$

Setting the stiffness equal to zero yields the buckling value of the axial force, P :

$$
\mathrm{P}_{\mathrm{cr}}=\frac{\mathrm{k}_{\theta}}{\mathrm{L}}
$$

Aside note: Calibrating the spring stiffness

One way in which to select a value for k_{θ} is to demand that the displacement at the tip of the stick model, subjected to the load F, should match the displacement of an elastic cantilevered beam, which is $\Delta=\frac{F \cdot L^{3}}{3 \cdot E \cdot I}$. As a result, the examination of the linear elastic stiffness from above, which is $\frac{k_{\theta}}{L^{2}}$, suggests that $k_{\theta}=\frac{3 \cdot E \cdot I}{L}$ would give the same displacement of the stick model and an elastic cantilever, subjected to a lateral load F. Subsitution of that spring stiffness into the previously determined buckling load gives:
$P_{\mathrm{cr}}=\frac{3 \cdot E \cdot I}{L^{2}}$
In contrast, the exact Euler buckling load for a cantilever is $P_{\mathrm{cr}}=\frac{\pi^{2} \cdot E \cdot I}{(2 \cdot L)^{2}}=\frac{2.47 \cdot E \cdot I}{L^{2}}$. This confirms a well-known mantra in structural analysis and the finite element method: The assumption of a displaced shape that is not entirely correct makes the structure too stiff. Here, that manifests in a higher approximate buckling load.

Aside note: Variational Formulation

In the document on energy methods, posted elsewhere on this website, the following expression are available for internal strain energy, U, and potential energy in loads, H :

Strain energy in spring: $U=\frac{1}{2} k_{\theta} \theta^{2}$

Potential energy is lateral load: $H=-F \cdot \Delta$
Potential energy in axial load, from Green's strain: $H=-P \cdot L \cdot \frac{\theta^{2}}{2}$

After substituting the kinematic compatibility relationship $\theta=\frac{\Delta}{L}$, the total potential energy reads:
$\Pi=U+H=\frac{1}{2 \cdot L^{2}} k_{\theta} \Delta^{2}-F \cdot \Delta-\frac{P}{2 \cdot L} \cdot \Delta^{2}$
According to the principle of minimum potential energy, the variation of Π must be zero:
$\delta \Pi=\frac{k_{\theta}}{L^{2}} \cdot \Delta \cdot \delta \Delta-F \cdot \delta \Delta-\frac{P}{L} \cdot \Delta \cdot \delta \Delta=0$

Rearranging yields:
$\left(\frac{k_{\theta}}{L^{2}} \cdot \Delta-F-\frac{P}{L} \cdot \Delta\right) \delta \Delta=0$

For arbitrary variations, i.e., for arbitrary $\delta \Delta$, the parenthesis must be zero in order for that equation to hold true. That means, confirming the result in the previous section:
$F=\left(\frac{k_{\theta}}{L^{2}}-\frac{P}{L}\right) \cdot \Delta$

Inelastic Material with P-delta

In the following, the axial force, P, is expressed as a fraction of the buckling load:

$$
\mathrm{P}=\lambda \mathrm{P}_{\mathrm{cr}}=\lambda \frac{\mathrm{k}_{\theta}}{\mathrm{L}}
$$

Prior to yielding, the governing F- Δ relationship is the same as above. After yielding the material law is

$$
\mathrm{M}=\alpha \mathrm{k}_{\theta} \theta
$$

where α is the strain hardening parameter that essentially represents the "second-slope stiffness," in the sense that the stiffness after yielding changes from k_{θ} to αk_{θ}. That means the governing $F-\Delta$ relationship after yielding, and including the P-delta effect, reads

$$
\begin{gathered}
F=\frac{M}{L}-\frac{P}{L} \Delta=\frac{M_{y}+\alpha k_{\theta}\left(\theta-\theta_{y}\right)}{L}-\frac{\lambda P_{c r}}{L} \Delta= \\
=\frac{M_{y}+\alpha k_{\theta}\left(\frac{\Delta}{L}-\frac{M_{y}}{k_{\theta}}\right)}{L}-\frac{\lambda k_{\theta}}{L^{2}} \Delta= \\
=\frac{M_{y}}{L}(1-\alpha)+\frac{k_{\theta}}{L^{2}}(\alpha-\lambda) \Delta
\end{gathered}
$$

Plotting

Values:

$$
\begin{aligned}
& \mathrm{E}=10000 ; \\
& \text { fy }=40 ; \\
& \mathrm{b}=100 ; \\
& \mathrm{h}=200 ; \\
& \mathrm{L}=5000 ; \\
& \mathrm{I}=\frac{\mathrm{b} \mathrm{~h}^{3}}{12} ; \\
& \mathrm{k} \theta=3 \mathrm{E} I / \mathrm{L} ; \\
& \lambda=\{0.0,0.02,0.1,0.5\} ; \\
& \alpha=0.02 ; \\
& \text { My }=\frac{\text { fy } I}{\frac{h}{2}} ;
\end{aligned}
$$

Expression from above:

$$
F=\operatorname{If}\left[\Delta<\frac{M y}{k \theta} L,\left(\frac{k \theta}{L^{2}}-\frac{\lambda k \theta}{L^{2}}\right) \Delta, \frac{M y}{L}(1-\alpha)+\frac{k \theta}{L^{2}}(\alpha-\lambda) \Delta\right] ;
$$

Notice how collapse occurs if $\lambda>\alpha$; namely, if the fraction of the buckling load exceeds the strain hardening percentage:

