
Inelastic Stick Model with P-delta
Consider a vertical cantilevered “stick model” of a column. It has a rotational spring at the bottom, 
and a lateral force F at the top, plus an axial force P at the top. The lateral displacement at the top is 
denoted Δ. The length of the column is L and its rotation is denoted θ. 
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Linear Elastic
Equilibrium:

M = F L

Material law:

M = kθ θ

Kinematic compatibility:

Δ = θ L

Combine the equilibrium, material law, and kinematic compatibility to obtain the governing F-Δ 
relationship:

F =
M
L

=
kθ θ

L
=
kθ

L2
Δ

where the linear elastic stiffness is identified. 
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Linear Material with P-delta
Equilibrium of the displaced shape includes the P-delta effect: 

M = F L + P Δ

The other governing equations remain the same as for the linear elastic case. Again combining 
equilibrium, material law, and kinematic compatibility to obtain the governing F-Δ relationship yields:

F =
M
L
-
P
L

Δ =
kθ θ

L
-
P
L

Δ =
kθ

L2
-
P
L

Δ

Setting the stiffness equal to zero yields the buckling value of the axial force, P:

Pcr =
kθ

L

Aside note: Calibrating the spring stiffness
One way in which to select a value for kθ is to demand that the displacement at the tip of the stick 
model, subjected to the load F, should match the displacement of an elastic cantilevered beam, which 

is Δ = F·L3

3·E·I
. As a result, the examination of the linear elastic stiffness from above, which is kθ

L2 , 

suggests that kθ = 3·E·I
L

 would give the same displacement of the stick model and an elastic cantilever, 

subjected to a lateral load F. Subsitution of that spring stiffness into the previously determined 
buckling load gives: 

Pcr =
3·E·I
L2  

In contrast, the exact Euler buckling load for a cantilever is Pcr =
π2·E·I
(2·L)2

= 2.47·E·I
L2 . This confirms a 

well-known mantra in structural analysis and the finite element method: The assumption of a 
displaced shape that is not entirely correct makes the structure too stiff. Here, that manifests in a 
higher approximate buckling load. 

Aside note: Variational Formulation
In the document on energy methods, posted elsewhere on this website, the following expression are 
available for internal strain energy, U, and potential energy in loads, H:

Strain energy in spring: U = 1
2
kθ θ2

Potential energy is lateral load: H = -F · Δ

Potential energy in axial load, from Green’s strain: H = -P · L · θ2

2

After substituting the kinematic compatibility relationship θ = Δ
L

, the total potential energy reads: 

Π = U +H = 1
2·L2 kθ Δ

2 - F · Δ - P
2·L

· Δ2

According to the principle of minimum potential energy, the variation of Π must be zero:

δΠ = kθ
L2 · Δ · δΔ - F · δΔ - P

L
· Δ · δΔ = 0

Rearranging yields: 

 kθ
L2 · Δ - F - P

L
· Δ δΔ = 0

For arbitrary variations, i.e., for arbitrary δΔ, the parenthesis must be zero in order for that equation to 
hold true. That means, confirming the result in the previous section: 

F =  kθ
L2 - P

L
 · Δ
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available for internal strain energy, U, and potential energy in loads, H:
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2
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, the total potential energy reads: 
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2·L2 kθ Δ

2 - F · Δ - P
2·L

· Δ2

According to the principle of minimum potential energy, the variation of Π must be zero:
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L
· Δ · δΔ = 0

Rearranging yields: 

 kθ
L2 · Δ - F - P

L
· Δ δΔ = 0

For arbitrary variations, i.e., for arbitrary δΔ, the parenthesis must be zero in order for that equation to 
hold true. That means, confirming the result in the previous section: 

F =  kθ
L2 - P

L
 · Δ

Inelastic Material with P-delta
In the following, the axial force, P, is expressed as a fraction of the buckling load:

P = λ Pcr = λ
kθ

L
Prior to yielding, the governing F-Δ relationship is the same as above. After yielding the material law 
is

M = α kθ θ

where α is the strain hardening parameter that essentially represents the “second-slope stiffness,” in 
the sense that the stiffness after yielding changes from kθ to α kθ. That means the governing F-Δ 
relationship after yielding, and including the P-delta effect, reads
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F =
M
L
-
P
L

Δ =
My + α kθ (θ - θy)

L
-
λ Pcr
L

Δ =

=
My + α kθ  Δ

L
-

My
kθ



L
-
λ kθ

L2
Δ =

=
My
L

(1 - α) +
kθ

L2
(α - λ) Δ

Plotting
Values:

Ε = 10000;
fy = 40;
b = 100;
h = 200;
L = 5000;

Ι =
b h3

12
;

kθ = 3 Ε Ι / L;
λ = {0.0, 0.02, 0.1, 0.5};
α = 0.02;

My =
fy Ι

h
2

;

Expression from above:

F = IfΔ <
My

kθ
L,

kθ

L2
-

λ kθ

L2
Δ,

My

L
(1 - α) +

kθ

L2
(α - λ) Δ;

Notice how collapse occurs if λ>α; namely, if the fraction of the buckling load exceeds the strain 
hardening percentage:
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Plot[F, {Δ, 0, 600}]
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which yields:

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Examples Updated February 2, 2024 Page 5


