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Hjelmstad’s Nonlinear Beam 
This example appears in Chapter 11 of the superb textbook by Hjelmstad (1997). In 
Chapter 12 he extends it to numerical analysis with the Newton-Raphson method. In the 
following, portions of that example are explained. Any errors and obscurity that may 
appear in this document are due to my own misrepresentation of Hjelmstad’s beautiful 
work. On the same note, some sign conventions for stress resultants and the shear angle 
are different in this document, following other documents posted on this website. The 
starting point for the derivations is equilibrium. Documents posted on this website, 
related to energy methods and also various boundary value problems, give an 
introduction to establishing the weak form with equilibrium as a starting point. As an 
example, consider Euler-Bernoulli beam theory, in which equilibrium in the z-direction 
reads: 

 −
𝑑𝑉
𝑑𝑥 + 𝑞! = 0 (1) 

and counter-clockwise moment equilibrium reads 

 −
𝑑𝑀
𝑑𝑥 − 𝑉 = 0 (2) 

Weighting and integration of those equations, with dw (acts in the z-direction) and dq 
(acts counter-clockwise),  respectively, while introducing the notation •/dx º •’ gives 

 *(−𝑉" + 𝑞!) ⋅ 𝛿𝑤	𝑑𝑥
#

$

= 0 (3) 

and  

 *(−𝑀′ − 𝑉) ⋅ 𝛿𝜃	𝑑𝑥
#

$

= 0 (4) 

Integration by parts, in order to avoid derivatives of the stress resultants, yields, after 
cancelling boundary terms: 

 *(𝑉 ⋅ 𝛿𝑤" + 𝑞! ⋅ 𝛿𝑤)	𝑑𝑥
#

$

= 0 (5) 

and  

 *(𝑀 ⋅ 𝛿𝜃" − 𝑉 ⋅ 𝛿𝜃)	𝑑𝑥
#

$

= 0 (6) 

The terms in Eqs. (5) and (6) are now sorted into external and internal virtual work. The 
external virtual work is recognized from documents on this website where the load vector 
for beam elements is developed: 
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 𝛿𝑊%&' = *𝑞! ⋅ 𝛿𝑤	𝑑𝑥
#

$

 (7) 

The internal virtual work contains terms from both Eq. (5) and Eq. (6): 

 𝛿𝑊()' = *(𝑀 ⋅ 𝛿𝜃" − 𝑉 ⋅ 𝛿𝜃 + 𝑉 ⋅ 𝛿𝑤′)	𝑑𝑥
#

$

 (8) 

V cancels against V. By neglecting shear deformation, we have that dq =dw¢, and Eq. (7) 
simplifies to 

 𝛿𝑊()' = *(𝑀 ⋅ 𝛿𝑤"")	𝑑𝑥
#

$

 (9) 

Finally, introducing M=EI w¢¢, i.e., material law with kinematic compatibility built into it, 
we arrive at the well-known internal virtual work for beam bending: 

 𝛿𝑊()' = *(𝐸𝐼 ⋅ 𝑤"" ⋅ 𝛿𝑤"")	𝑑𝑥
#

$

 (10) 

A similar procedure is observed in the following.  

Equilibrium 
Consider the infinitesimally small portion of a beam shown in Figure 1. It is subjected to 
distributed load, qz, in the z-direction, distributed load, qx, in the x-direction, as well as 
distributed counter-clockwise moment, m. Considering the left-hand side of Figure 1, 
equilibrium in the x-direction yields 

 −𝑁 + 𝑁 + 𝑑𝑁 + 𝑞* ⋅ 𝑑𝑥 = 0 ⟹ 𝑁" + 𝑞* = 0 (11) 

 
Figure 1: Portion of a beam with large displacements. 
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Equilibrium in the z-direction yields 

 𝑉 − 𝑉 − 𝑑𝑉 + 𝑞! ⋅ 𝑑𝑥 = 0 ⟹ −𝑉" + 𝑞! = 0 (12) 
Moment equilibrium, with counter-clockwise as positive, about the right-hand side edge 
of the infinitesimal beam element yields 

 −𝑀 +𝑀 + 𝑑𝑀 − 𝑉(𝑑𝑥 + 𝑑𝑢) − 𝑁	𝑑𝑤 +𝑚	𝑑𝑥 = 0 (13) 
where loading terms containing dx2 are neglected. Cancelling M against M and dividing 
through by dx yields 

 𝑀" − 𝑉(1 + 𝑢") − 𝑁	𝑤′ + 𝑚 = 0 (14) 
For future reference, before leaving the equilibrium section, in order to account for large 
deformations, N and V are related to the rotated stress resultants Nrot and Vrot, shown on 
the right-hand side of Figure 1: 

 𝑁 = 𝑁+,' ⋅ cos(𝜃) + 𝑉+,' ⋅ sin(𝜃) (15) 

 𝑉 = 𝑉+,' ⋅ cos(𝜃) − 𝑁+,' ⋅ sin(𝜃) (16) 

Virtual Work 
Eqs. (11), (12), and (14) are the governing equilibrium equations in the x, z, and 
rotational directions. They are now weighted by du, dw, and dq, respectively, and then 
integrated from 0 to L. First, the x-direction: 

 *(𝑁" + 𝑞*)	𝛿𝑢	𝑑𝑥
#

$

= 0 (17) 

Next, the z-direction: 

 *(−𝑉" + 𝑞!)	𝛿𝑤	𝑑𝑥
#

$

= 0 (18) 

Finally, the counter-clockwise rotational direction: 

 *(𝑀" − 𝑉(1 + 𝑢") − 𝑁	𝑤′ + 𝑚)	𝛿𝜃	𝑑𝑥
#

$

= 0 (19) 

Next, the weight functions are multiplied into the parentheses, and integration by parts is 
carried out in order to avoid derivatives on the stress resultants. Boundary terms cancel: 

 *(−𝑁𝛿𝑢" + 𝑞*𝛿𝑢)	𝑑𝑥
#

$

= 0 (20) 

 *(𝑉𝛿𝑤′ + 𝑞!𝛿𝑤)	𝑑𝑥
#

$

= 0 (21) 
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 *(−𝑀𝛿𝜃′ − 𝑉(1 + 𝑢")𝛿𝜃 − 𝑁	𝑤′𝛿𝜃 + 𝑚	𝛿𝜃)	𝑑𝑥
#

$

= 0 (22) 

All terms in Eqs. (20), (21), and (22) are now sorted as either external or internal virtual 
work: 

 𝛿𝑊%&' = *(𝑞*𝛿𝑢 + 𝑞!𝛿𝑤 +𝑚	𝛿𝜃)	𝑑𝑥
#

$

 (23) 

 𝛿𝑊()' = *(−𝑁𝛿𝑢" + 𝑉𝛿𝑤′ − 𝑀𝛿𝜃′ − 𝑉(1 + 𝑢")𝛿𝜃 − 𝑁	𝑤′𝛿𝜃)	𝑑𝑥
#

$

 (24) 

Next, Eq. (24) is reorganized by stress resultant: 

 𝛿𝑊()' = *(−𝑁(𝛿𝑢" +𝑤"𝛿𝜃) + 𝑉(𝛿𝑤" − (1 + 𝑢")𝛿𝜃) − 𝑀𝛿𝜃′)	𝑑𝑥
#

$

 (25) 

This is a good time to insert the equilibrium equations (15) and (16) into Eq. (25) in order 
to express the internal virtual work in terms of the rotated stress resultants: 

 𝛿𝑊()' = *@
−(𝑁+,' ⋅ cos(𝜃) + 𝑉+,' ⋅ sin(𝜃))(𝛿𝑢" +𝑤"𝛿𝜃)

+(𝑉+,' ⋅ cos(𝜃) − 𝑁+,' ⋅ sin(𝜃))(𝛿𝑤" − (1 + 𝑢")𝛿𝜃)
−𝑀𝛿𝜃′

A 	𝑑𝑥
#

$

 (26) 

We reorganize again by stress resultant to obtain 

 𝛿𝑊!"# = $%
𝑁$%#(−𝛿𝑢& cos(𝜃) − 𝑤&𝛿𝜃 cos(𝜃) − 𝛿𝑤& sin(𝜃) + (1 + 𝑢&)𝛿𝜃 sin(𝜃))
+𝑉$%#(−𝛿𝑢& sin(𝜃) − 𝑤&𝛿𝜃 sin(𝜃) + 𝛿𝑤& cos(𝜃) − (1 + 𝑢&)𝛿𝜃 cos(𝜃))

+𝑀(𝛿𝜃′)
7 	𝑑𝑥

'

(

 (27) 

The parentheses that the stress resultants multiply with are by definition the 
corresponding virtual strains, i.e., virtual axial strain de, shear angle dg, and curvature dk. 
In other words, the virtual axial strain is 

 𝛿𝜀 = −𝛿𝑢"cos(𝜃) − 𝑤" cos(𝜃)𝛿𝜃 − 𝛿𝑤" sin(𝜃) + (1 + 𝑢") sin(𝜃)𝛿𝜃 (28) 

Similarly, from Eq. (27), the virtual shear angle is  

 𝛿𝛾 = −𝛿𝑢"sin(𝜃) − 𝑤" sin(𝜃) 𝛿𝜃 + 𝛿𝑤" cos(𝜃) − (1 + 𝑢") cos(𝜃) 𝛿𝜃 (29) 

and the virtual curvature is simply dq¢.  

Real Strains 
In order to obtain the corresponding real strains, “anti-variation” from variational 
calculus is carried out on Eqs. (28) and (29). This is nicely explained in Hjelmstad’s book 
via Vainberg’s theorem. As an introduction, we here arbitrarily consider the functional 
w¢×cos(q). Recognizing w and q as independent functions, taking the variation yields 
dw¢×cos(q) – w¢×sin(q)×dq. What we want in Eqs. (28) and (29) is to go the other way, i.e., 
anti-variation. That becomes a puzzle of symmetry, as explained by Hjelmstad, meaning 
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that we must recognize that the anti-variation of dw¢×cos(q) – w¢×sin(q)×dq is w¢×cos(q). 
That is a bookkeeping issue. To that end, the terms in Eq. (28) are examined in Figure 2 
and the terms in Eq. (29) are examined in Figure 3. The result from the anti-variation 
observed in those figures is 

 𝜀 = −𝑤" sin(𝜃) − (1 + 𝑢") cos(𝜃) + 1	 (30) 

 𝛾 = 𝑤" cos(𝜃) − (1 + 𝑢") sin(𝜃) (31) 
where the “plus one” in Eq. (30) is introduced in order to observe zero strain in the 
presence of zero deformation.  

 
Figure 2: Examining terms to conduct anti-variation for axial strain. 

 

 
Figure 3: Examining terms to conduct anti-variation for shear strain. 

Material Law 
The relationship between stress resultants and corresponding deformations are here 
referred to as the material law, although they also contain kinematic compatibility 
equations at the element level. The relationship between axial force and axial strain is 

 𝑁 = 𝐸𝐴 ⋅ 𝜀 (32) 
The relationship between shear force and shear angle is (see the document on 
Timonshenko beams) 
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 𝑉 = 𝐺𝐴- ⋅ 𝛾 (33) 

Finally, the relationship between bending moment and curvature is 

 𝑀 = 𝐸𝐼 ⋅ 𝜅 (34) 

where k =q¢. 

Simplifications, Option 1: Euler’s Elastica 
Before utilizing the full formulation established above in nonlinear analysis, a couple of 
simplifications are explored. One is to neglect axial deformation. Interestingly, this 
restraint can be enforced by considering Eq. (30). By setting w¢=sin(q) and 1+u¢=cos(q) 
that equation takes the form e = –sin2(q) – cos2(q) + 1, which equals zero axial strain. As 
a result, Eq. (14) turns into 

 𝑀" − 𝑉 ⋅ cos(𝜃) − 𝑁 ⋅ sin(𝜃) + 𝑚 = 0 (35) 
This is Euler’s elastica theory, and a further simplification is introduced by considering a 
cantilevered column without shear force, simply with an axial force, P, at the top. This 
means that Eq. (35) reads, once M=EI×q¢ is introduced: 

 𝐸𝐼 ⋅ 𝜃"" − 𝑃 ⋅ sin(𝜃) = 0 (36) 

with boundary conditions q(0)=0 and q¢(L)=0. One manner in which to employ Eq. (36) 
is to weight & integrate it in order to obtain the “weighted residual form” of the boundary 
value problem:  

 *(𝐸𝐼 ⋅ 𝜃"" − 𝑃 ⋅ sin(𝜃))	𝛿𝜃	𝑑𝑥
#

$

= 0 (37) 

followed by integration by parts, as shown in other documents on this website, in order to 
obtain the weak form: 

 *(𝐸𝐼 ⋅ 𝜃" ⋅ 𝛿𝜃′ − 𝑃 ⋅ sin(𝜃) ⋅ 𝛿𝜃)	𝑑𝑥
#

$

= 0 (38) 

Anti-variation from variational calculus yields 

 *H
1
2 ⋅ 𝐸𝐼 ⋅

(𝜃"). + 𝑃 ⋅ cos(𝜃)J 	𝑑𝑥
#

$

= 0 (39) 

which is the energy form with the second term comparable to Green’s strain, with two 
caveats: 1) Green’s strain is an approximation; 2) The potential energy in P is here 
measured with starting value PL instead of zero, as it is when the energy is expressed as 
PDvert.  
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Simplifications, Option 2: Linearized Buckling Theory 
Another way to simplify the previously established theory is to assume small q, which 
means that sin(q)»q and cos(q)»1. It is also assumed that w¢»q and u¢»0. Consider the 
previously established equilibrium equations and differentiate Eq. (14) once, followed by 
substitution of Eq. (12):  

 𝑀"" − (𝑁	𝑤")′ − 𝑞! +𝑚′ = 0 (40) 

Substitution of M=EIw¢¢ together with the assumption that EI and N are constant gives 

 𝐸𝐼	𝑤′′′′ − 𝑁	𝑤"" − 𝑞! +𝑚′ = 0 (41) 

Weighting & integration yields 

 *(𝐸𝐼	𝑤′′′′ − 𝑁	𝑤"" − 𝑞! +𝑚′)	𝛿𝑤	𝑑𝑥
#

$

= 0 (42) 

Integration by parts yields the weak form: 

 *(𝐸𝐼	𝑤""𝛿𝑤"" − 𝑁	𝑤"𝛿𝑤" − 𝑞!𝛿𝑤 +𝑚	𝛿𝑤′)	𝑑𝑥
#

$

= 0 (43) 

Anti-variation yields the variational form, i.e., expressed in terms of energy: 

 *H
1
2𝐸𝐼	

(𝑤""). − 𝑁
1
2
(𝑤"). − 𝑞!	𝑤 + 𝑚	𝑤′J 	𝑑𝑥

#

$

= 0 (44) 

In comparison with Eq. (39), notice how the potential energy in the axial force is now 
expressed in terms of Green’s strain; see documents on energy methods and the truss with 
geometric nonlinearity. Also, the potential energy in the axial force is now measured with 
starting value zero, i.e., that potential energy is expressed in terms of PDvert.  

No Simplifications: Full Nonlinear Analysis 
The virtual work formulation established earlier represents dWint=dWext with dWext given 
in Eq. (23) and dWint given in Eq. (27) so that the generic form is 

 *(𝐸𝐴	𝜀	𝛿𝜀 + 𝐺𝐴-	𝛾	𝛿𝛾 + 𝐸𝐼	𝜅	𝛿𝜅)	𝑑𝑥
#

$

= *(𝑞*𝛿𝑢 + 𝑞!𝛿𝑤 +𝑚	𝛿𝜃)	𝑑𝑥
#

$

 (45) 

with de and dg defined in Eqs. (28) and (29), and e and k defined in Eqs. (30) and (31). 
Following the last chapter in Hjelmstad’s book, the objective is now to employ this full 
formulation in a nonlinear analysis with the Newton-Raphson algorithm. To understand 
how this is done, concepts from the linear and nonlinear finite element method explained 
on the Finite Elements page of this website are employed:  

1. Establish the weak form of the boundary value problem; this is already done 
above and summarized in Eq. (45) 
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2. Collect the unknown field functions in the vector 𝐮L(x)º{u(x), w(x), q(x)} and 
express the weak form as the functional G(l, 𝐮L, d𝐮L) = dWint – dWext, where l is 
the load factor 

3. Discretize the problem; in the generic finite element method this is done by 
𝐮L(x)=N(x)u and here by 𝐮L(x)=h(x)a, where a are unknown constants, often called 
generalized degrees of freedom, but not actual displacement degrees of freedom; 
this is known as the Ritz method after work by Walter Ritz published in 1908 

4. Use the same approximation for virtual displacements as for the real 
displacements; this is known as the Galerkin approach 

5. Taylor linearize G»G(ai)+ÑG(ai)·Da and formulate each Newton-Raphson 
iteration as ai+1 = ai + Da with Da from solving G(ai)+ÑG(ai)·Da=0 

While shape functions, N(x), are spelled out for various finite elements elsewhere on this 
website, the “basis functions” h(x) require further attention here.  

Working on this document in the spring of 2024… 
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