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Theory of Elasticity, Article 21, 
Cantilever 

The following are general derivations for 2D theory of elasticity, followed by specific 
considerations for a cantilevered beam. Kinematic compatibility in the 2D case reads 

  (1) 

Differentiating the first equation twice with respect to y, then differentiating the second 
equation twice with respect to x, and finally differentiating the third equation with respect 
to x and y yields 

  (2) 

  (3) 

  (4) 

Substituting Eqs. (6) and (7) into Eq. (8) yields the “compatibility equation” in 2D 
elasticity theory, which states the necessary relationship between the strains for a 
deformation pattern to be physically valid: 

  (5) 

Differentiating the first equation twice with respect to y, then differentiating the second 
equation twice with respect to x, and finally differentiating the third equation with respect 
to x and y yields 

  (6) 

  (7) 

  (8) 
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Substituting Eqs. (6) and (7) into Eq. (8) yields the “compatibility equation” that states 
the necessary relationship between the strains for the deformation pattern to be physically 
valid: 

  (9) 

That compatibility equation can be reformulated by the introduction of material law, here 
using the plane stress material law, which substituted into Eq. (9) yields 

  (10) 

where E cancels and the new compatibility equation simplifies to 

  (11) 

As shown in Section 16 of Timoshenko’s book on the theory of elasticity, Eq. (11) can be 
further modified by introducing equilibrium (Timoshenko and Goodier 1969). To achieve 
this the first step is to write the equilibrium equations in 2D, a straightforward 
simplification of the 3D version: 

  (12) 

  (13) 

Assuming the body forces are uniform and differentiating Eq. (12) with respect to x and 
Eq. (13) with respect to y yields 

  (14) 

  (15) 

Adding Eqs. (14) and (15), i.e., adding zero with zero yields 

  (16) 

This equilibrium equation is now solved for the cross-derivative, which is substituted into 
Eq. (11) to obtain the following new compatibility equation: 

  (17) 
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Simplification yields the compatibility equation in terms of stresses 

  (18) 

which can be written 

  (19) 

This equation holds also for plane strain and has a non-zero right-hand side when the 
body forces are not uniform (Timoshenko and Goodier 1969): 

  (20) 

One approach to solve 2D continuum problems is to seek stresses that imply equilibrium 
and that satisfy the compatibility equations presented above, together with problem-
specific boundary conditions. A clever approach to achieve this is a concept called stress 
functions. To that end, in many boundary value problems in structural mechanics, it is 
possible to combine equilibrium, material law, and kinematic compatibility equations into 
one governing differentiation equation. This equation, together with problem-specific 
boundary conditions on forces and displacements, are used to obtain solutions. In the 2D 
theory of elasticity, and certain other problems, an additional helpful concept is the 
“stress functions” introduced by George Biddell Airy (1801-1892) in an 1862 paper. The 
stress function itself does not have physical meaning. Instead it is an auxiliary quantity, 
here denoted j(x,y), from which stresses are derived:  
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Notice that the double derivative of the stress function in one direction produces axial 
stress in the perpendicular direction. That is perhaps the most physical interpretation that 
is possible for the stress function. Next it is interesting to combine the stress function 
with the equations for equilibrium, material law, and kinematic compatibility. Starting 
with equilibrium, Eqs. (21)-(23) are substituted into Eqs. (12) and (13) yielding 

  (24) 

  
−
∂2σ yy

∂y2 −
∂2σ xx

∂x2 =
∂2σ xx

∂y2 +
∂2σ yy

∂x2

  

∂2

∂x2 +
∂2

∂y2

⎛
⎝⎜

⎞
⎠⎟
σ xx +σ yy( ) = 0

  

∂2

∂x2 +
∂2

∂y2

⎛
⎝⎜

⎞
⎠⎟
σ xx +σ yy( ) = − 1

1−ν
∂ fx

∂x
+
∂ f y

∂y

⎛

⎝
⎜

⎞

⎠
⎟

  
σ xx =

∂2ϕ
∂y2 − fx ⋅ x

  
σ yy =

∂2ϕ
∂x2 − f y ⋅ y

  
τ xy ≡ σ xy = − ∂2ϕ

∂x∂y

  

d
∂2ϕ
∂y2 − fx ⋅ x

⎛
⎝⎜

⎞
⎠⎟

dx
+

d − ∂2ϕ
∂x∂y

⎛
⎝⎜

⎞
⎠⎟

dy
+ fx =

∂2ϕ
∂y2 ∂x

− fx −
∂2ϕ

∂x∂y2 + fx = 0



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Theory of Elasticity, Article 21, Cantilever Updated February 20, 2024 Page 4 

  (25) 

which demonstrates that the equilibrium equations are automatically satisfied with the 
stress function definition in Eqs. (21)-(23). Only material law and kinematic 
compatibility remain and those have already been combined in the compatibility 
equations presented earlier. Substitution of the stress function in Eqs. Eqs. (21)-(23) into 
the compatibility equation in Eq. (19) and assuming uniform body forces yields 

  (26) 

This equation is the governing equation for 2D continuum problems. Solutions are found 
by establishing stress functions that satisfy Eq. (26) together with problem-specific 
boundary conditions. Once the stress function is determined the stresses are found from 
Eqs. (21)-(23). However, many real in-plane members have shapes and boundary 
conditions that render such analytical solutions unattainable. The numerical finite 
element method provides and alternative in those circumstances.  

Application to 2D Elastic Beam 
In other documents on this website, the Euler-Bernoulli and Timoshenko beam theories 
are described. Both those theories assume that plane sections remain plane and 
perpendicular to the neutral axis. That is not an exact description of reality and this 
document describes an alternative, based on the 2D theory of elasticity. In particular, a 
cantilevered beam in the x-z-plane is considered in the following, as shown in Figure 1. 
In another document on 2D elasticity theory, the 4th-order differential equation for the 
stress function is derived. Written in terms of x and z it reads 

  (27) 

 
Figure 1: Beam on elastic foundation. 
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The solution for specific problems is established by formulating a stress function that 
satisfies the unique boundary conditions for each problem. As a demonstration, the 
cantilever in Figure 1 is considered in this section. To simplify the mathematical 
expressions, the fixed support is on the right-hand side and the load is applied on the left-
hand side. A solution for this problem, where the horizontal edges are stress-free and the 
edge at x=0 has a shear stress resultant P, is obtained by combining the stress function for 
pure shear and a stress function with a 3rd-order term (Timoshenko and Goodier 1969): 

  (28) 

This stress function yields the following stresses: 
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Shear stress resultant P at x=0 implies that 

  (33) 

which implies that 

  (34) 

Substitution of C1 and C2 into Eq. (29) yields the axial stress 
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Eq. (36). However, more information is available from this elasticity solution than beam 
theory. In particular, displacements can be calculated, and these reveal that plane sections 
do not remain plane during bending. To see this, i.e., to compute the displacements 
associated with the stresses above, the general kinematics equations are invoked, which 
read 

  (37) 

  (38) 

  (39) 

The material law is also needed, which for plane stress (thin beam in the y-direction) read 

  (40) 
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where G=E(2(1+n)) is the shear modulus. The material law for plane strain (infinitely 
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(Timoshenko and Goodier 1969), which yields   
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  (48) 

Integration of Eqs. (46) and (47) yields the general displacement expressions 

  (49) 

  (50) 

where hx(x) and hz(z) are functions that represent the integration constants. Substitution of 
Eqs. (49) and (50) into Eq. (48) yields 
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  (58) 

  (59) 

The constants C3, C4, C5, and C6 are determined from Eq. (53), which says that 
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  (68) 

Eq. (60) then yields 

  (69) 

Eq. (62) then yields 

  (70) 

which means that all the constants C3, C4, C5, and C6 are determined and the final 
displacement expressions are: 
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To observe the distortion of a plane cross-section during bending, the deformed shape of 
an extreme-case beam (h=1m, L=1m, E=200,000N/mm2, n=0.3, P=10MN) is plotted in 
Figure 2. The solid line shows the solution given by Eq. (66) and shows that the cross-
section remains vertical at x=L and z=0. However, for other z-values it has clearly 
distorted from being a straight line. The dashed line shows the solution given by Eq. (71), 
where the horizontal line at x=L and z=0 remains horizontal. Note that the angle between 
the neutral axis and the cross-section at z=0 is obtained from Eq. (67): 
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Figure 2: Cross-section distortion in the x-z-plane. 
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