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Load Incrementation Strategies 
The previous document on this website says something about how to solve the governing 
equations 𝐅"! = 𝐅! in nonlinear structural analysis. That document also alludes to the fact 
that it is rarely a good idea to put the full external loads on at once; that may lead to 
convergence problems. Load incrementation strategies address that issue by writing the 
load as 

 𝐅! = λ ∙ 𝐅"#! (1) 

where l is the “load factor” and Fref are the “reference loads,” i.e., the full loads on the 
structure. In this manner, the loads can be placed on the structure little-by-little, by letting 
l vary in steps from zero to unity. Notice the jargon: Each step is called a load increment 
or a load step, and Newton-Raphson iterations to equilibrium occur at each increment. It 
is helpful to relate l to a time-parameter that is “pseudo time” in static analysis and actual 
time in dynamic analysis: 
 𝐅!(𝑡) = λ(𝑡) ∙ 𝐅"#! (2) 

That opens up a range of possibilities for applying the reference load, of which some are 
visualized in Figure 1. An important option in earthquake engineering is to set  
𝜆(𝑡) = �̈�$(𝑡) and let the reference load be expressed as –M.G, the latter described in the 
document on MDOF dynamics.  

 
Figure 1: Time series. 

In static analysis, where t represents pseudo time, there is freedom in how l(t) and Fref 
are defined relative to each other. Suppose a 5kN load is to be applied gradually to the 
structure, according to the linear graph at the middle of Figure 1. One option is then to set 
Fref =5kN and l(t)=t, reaching the full load at pseudo time t=1. Another option is to set 
Fref =5kN and l(t)=0.01t, reaching the full load at time t=100. Yet another option is to set 
Fref =1kN and l(t)=t, reaching the full load at time t=5. Finally, another option is to set 
Fref =1kN and l(t)=0.1t, reaching the full load at time t=50. Clearly, an infinite number of 
other options exist. Regardless, Dt is selected so that the desirable number of increments, 
i.e., load steps are analyzed. In terms of jargon, the functions l(t) in Figure 1 are referred 
to as time series, while the reference load, Fref, is referred to as a load pattern. The total 
load on a structure can be expressed by any number of time series & load pattern pairs: 
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where M=number of load patterns. What is described above is the simplest form of “load 
control” analysis. At each increment, the loads on the structure are directly controlled by 
the load factor, l, which is incremented according to a pre-defined time series, l(t). The 
implementation of a load control analysis in Python is demonstrated in the “Nonlinear 2-
DOF Load Control” example posted on this website. 

Continuation Methods 
A problem with the approach described above is that the restoring forces in the structure 
may not be able to reach the applied load level. In other words, the load control analysis 
described above is unable to determine post-peak response. That is what continuation 
methods are intended for and some of those are described below. First, a generic 
derivation is provided in order to allow for the load factor, l, to vary within an increment, 
i.e., during the Newton-Raphson iterations. To that end, it is first recalled that the symbol 
n represents the increment number, while i is the iteration number. Also, the subscript f 
for the Final structural configuration is dropped for brevity of notation. The load factor at 
an increment can be expressed in terms of the previous increment as 
 λ* = λ*+) + Δ𝜆 (4) 

That means the applied loads at increment n are 
 𝐅* = 𝐅*+) + Δ𝜆 ∙ 𝐅"#! (5) 

In turn, that means the residual at iteration i reads 
 𝐑, = 𝐅", − 𝐅* = 𝐅", − 𝐅*+) − Δ𝜆 ∙ 𝐅"#! (6) 

Next, we make a big move, by allowing the load factor to vary from one iteration to the 
next within an increment. As a result, the terms in Eq. (6) that relates to the applied loads 
are given the index i: 

 𝐑, = 𝐅", − 𝐅,+) − Δ𝜆, ∙ 𝐅"#! (7) 

It is stressed that now Dl has the index i, allowing it to vary within an increment. At the 
first Newton-Raphson iteration within an increment, the load vector Fi–1 is the load vector 
at the end of the previous increment; thereafter it is the load vector at the previous 
iteration. The steadily accumulating total trial displacements are 

 𝐮, = 𝐮,+) + Δ𝐮, (8) 
The Newton-Raphson algorithm determines the change in the trial displacements, i.e., the 
displacement increment, Dui, by solving the system of equations 

 𝐊	Δ𝐮, = −𝐑, (9) 

Following Filippou & Fenves’ 2004 chapter in Bozorgnia and Bertero’s book Methods of 
Analysis for Earthquake-Resistant Structures, Eq. (7) is now substituted into Eq. (9), 
which gives 
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 𝐊	Δ𝐮, = 𝐅,+) + Δ𝜆, ∙ 𝐅"#! − 𝐅", (10) 

Next, the displacement increment is split into two parts, each matching a portion of the 
right-hand side of Eq. (10). Adopting the notation Dui =DuR,i + DuT,i (R for residual, T for 
tangent) the two equations emanating from the split of Eq. (10) are   
 𝐊	Δ𝐮-,, = 𝐅,+) − 𝐅", (11) 

and   

 𝐊	Δ𝐮.,, = Δ𝜆, ∙ 𝐅"#! (12) 

In regards to Eq. (11), it is noted that the applied loads can be written in terms of the load 
factor at the previous iteration, implying that Eq. (11) can be written 

 𝐊	Δ𝐮-,, = 𝜆,+) ∙ 𝐅"#! − 𝐅", (13) 

In regards to Eq. (12), it is observed that DuT,i can be written in terms of a reference 
displacement, uT, which remains constant throughout the iterations at each increment:  

 Δ𝐮.,, = Δ𝜆, ∙ Δ𝐮. (14) 

where uT is obtained by solving the system of equations 

 𝐊	𝐮. = 𝐅"#! (15) 

In short, the displacement increment is written 
 Δ𝐮, = Δ𝐮-,, + Δ𝜆, ∙ 𝐮. (16) 

The main contribution of the formulation presented above is opening up the possibility of 
making the load factor increment, Dl, a variable within an increment. That facilitates the 
calculation of the post-peak response. Several methods are available for that purpose, as 
described in the following. 

Displacement Control 
In this approach, one degree of freedom is selected to be a “control DOF,” sometimes 
casually referred to as a control node. At that DOF the displacement increment is 
imposed, meaning that it is not unknown, thereby giving us a left-over equation from 
which we determine the load factor. In other words, we take advantage of the 
developments above, allowing the load factor to vary during the Newton-Raphson 
iterations. In the following derivations it is convenient to define a “selection vector,” s, of 
dimension equal to the number of DOFs. s has zeros everywhere, except unity in the 
position of the control DOF. As an illustration, sTu is the displacement at the control 
DOF picked from the displacement vector u. Applied to Eq. (16), the displacement 
increment at the control DOF is 
 𝐬.Δ𝐮, = 𝐬.Δ𝐮-,, + Δ𝜆, ∙ 𝐬.𝐮. (17) 
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Except at the first iteration, which is addressed below, we wish the change in the 
displacement at the control node to be zero. Setting Eq. (17) equal to zero and solving it 
for the load factor increment yields 
 

Δ𝜆, = −
𝐬.Δ𝐮-,,
𝐬.𝐮.

 
(18) 

That is the essence of the displacement control algorithm. However, a special 
consideration is needed at the first iteration, i.e., for i=1. It is in that iteration that we 
impose the user-defined displacement increment at the control DOF. That is done by 
setting Eq. (17) equal to the user-defined Duo and solving for the load increment while 
recognizing that the “residual” displacement is zero at the first iteration: 

 Δ𝜆) =
∆𝑢/
𝐬.𝐮.

 (19) 

The implementation of a displacement control analysis in Python is demonstrated in the 
“Nonlinear 2-DOF Displacement Control” example posted on this website. 

Other Continuation Methods 
(To be written.)  


