
Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Load Incrementation Strategies Updated January 31, 2024 Page 1

Load Incrementation Strategies
The previous document on this website says something about how to solve the governing
equations 𝐅"! = 𝐅! in nonlinear structural analysis. That document also alludes to the fact
that it is rarely a good idea to put the full external loads on at once; that may lead to
convergence problems. Load incrementation strategies address that issue by writing the
load as

 𝐅! = λ ∙ 𝐅"#! (1)

where l is the “load factor” and Fref are the “reference loads,” i.e., the full loads on the
structure. In this manner, the loads can be placed on the structure little-by-little, by letting
l vary in steps from zero to unity. Notice the jargon: Each step is called a load increment
or a load step, and Newton-Raphson iterations to equilibrium occur at each increment. It
is helpful to relate l to a time-parameter that is “pseudo time” in static analysis and actual
time in dynamic analysis:
 𝐅!(𝑡) = λ(𝑡) ∙ 𝐅"#! (2)

That opens up a range of possibilities for applying the reference load, of which some are
visualized in Figure 1. An important option in earthquake engineering is to set
𝜆(𝑡) = �̈�$(𝑡) and let the reference load be expressed as –M.G, the latter described in the
document on MDOF dynamics.

Figure 1: Time series.

In static analysis, where t represents pseudo time, there is freedom in how l(t) and Fref
are defined relative to each other. Suppose a 5kN load is to be applied gradually to the
structure, according to the linear graph at the middle of Figure 1. One option is then to set
Fref =5kN and l(t)=t, reaching the full load at pseudo time t=1. Another option is to set
Fref =5kN and l(t)=0.01t, reaching the full load at time t=100. Yet another option is to set
Fref =1kN and l(t)=t, reaching the full load at time t=5. Finally, another option is to set
Fref =1kN and l(t)=0.1t, reaching the full load at time t=50. Clearly, an infinite number of
other options exist. Regardless, Dt is selected so that the desirable number of increments,
i.e., load steps are analyzed. In terms of jargon, the functions l(t) in Figure 1 are referred
to as time series, while the reference load, Fref, is referred to as a load pattern. The total
load on a structure can be expressed by any number of time series & load pattern pairs:

l(t)

t

l(t)

t

l(t)

t

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Load Incrementation Strategies Updated January 31, 2024 Page 2

𝐅!(𝑡) = , λ%(𝑡) ∙ 𝐅"#!,%

'

%()

(3)

where M=number of load patterns. What is described above is the simplest form of “load
control” analysis. At each increment, the loads on the structure are directly controlled by
the load factor, l, which is incremented according to a pre-defined time series, l(t). The
implementation of a load control analysis in Python is demonstrated in the “Nonlinear 2-
DOF Load Control” example posted on this website.

Continuation Methods
A problem with the approach described above is that the restoring forces in the structure
may not be able to reach the applied load level. In other words, the load control analysis
described above is unable to determine post-peak response. That is what continuation
methods are intended for and some of those are described below. First, a generic
derivation is provided in order to allow for the load factor, l, to vary within an increment,
i.e., during the Newton-Raphson iterations. To that end, it is first recalled that the symbol
n represents the increment number, while i is the iteration number. Also, the subscript f
for the Final structural configuration is dropped for brevity of notation. The load factor at
an increment can be expressed in terms of the previous increment as
 λ* = λ*+) + Δ𝜆 (4)

That means the applied loads at increment n are
 𝐅* = 𝐅*+) + Δ𝜆 ∙ 𝐅"#! (5)

In turn, that means the residual at iteration i reads
 𝐑, = 𝐅", − 𝐅* = 𝐅", − 𝐅*+) − Δ𝜆 ∙ 𝐅"#! (6)

Next, we make a big move, by allowing the load factor to vary from one iteration to the
next within an increment. As a result, the terms in Eq. (6) that relates to the applied loads
are given the index i:

 𝐑, = 𝐅", − 𝐅,+) − Δ𝜆, ∙ 𝐅"#! (7)

It is stressed that now Dl has the index i, allowing it to vary within an increment. At the
first Newton-Raphson iteration within an increment, the load vector Fi–1 is the load vector
at the end of the previous increment; thereafter it is the load vector at the previous
iteration. The steadily accumulating total trial displacements are

 𝐮, = 𝐮,+) + Δ𝐮, (8)
The Newton-Raphson algorithm determines the change in the trial displacements, i.e., the
displacement increment, Dui, by solving the system of equations

 𝐊	Δ𝐮, = −𝐑, (9)

Following Filippou & Fenves’ 2004 chapter in Bozorgnia and Bertero’s book Methods of
Analysis for Earthquake-Resistant Structures, Eq. (7) is now substituted into Eq. (9),
which gives

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Load Incrementation Strategies Updated January 31, 2024 Page 3

 𝐊	Δ𝐮, = 𝐅,+) + Δ𝜆, ∙ 𝐅"#! − 𝐅", (10)

Next, the displacement increment is split into two parts, each matching a portion of the
right-hand side of Eq. (10). Adopting the notation Dui =DuR,i + DuT,i (R for residual, T for
tangent) the two equations emanating from the split of Eq. (10) are
 𝐊	Δ𝐮-,, = 𝐅,+) − 𝐅", (11)

and

 𝐊	Δ𝐮.,, = Δ𝜆, ∙ 𝐅"#! (12)

In regards to Eq. (11), it is noted that the applied loads can be written in terms of the load
factor at the previous iteration, implying that Eq. (11) can be written

 𝐊	Δ𝐮-,, = 𝜆,+) ∙ 𝐅"#! − 𝐅", (13)

In regards to Eq. (12), it is observed that DuT,i can be written in terms of a reference
displacement, uT, which remains constant throughout the iterations at each increment:

 Δ𝐮.,, = Δ𝜆, ∙ Δ𝐮. (14)

where uT is obtained by solving the system of equations

 𝐊	𝐮. = 𝐅"#! (15)

In short, the displacement increment is written
 Δ𝐮, = Δ𝐮-,, + Δ𝜆, ∙ 𝐮. (16)

The main contribution of the formulation presented above is opening up the possibility of
making the load factor increment, Dl, a variable within an increment. That facilitates the
calculation of the post-peak response. Several methods are available for that purpose, as
described in the following.

Displacement Control
In this approach, one degree of freedom is selected to be a “control DOF,” sometimes
casually referred to as a control node. At that DOF the displacement increment is
imposed, meaning that it is not unknown, thereby giving us a left-over equation from
which we determine the load factor. In other words, we take advantage of the
developments above, allowing the load factor to vary during the Newton-Raphson
iterations. In the following derivations it is convenient to define a “selection vector,” s, of
dimension equal to the number of DOFs. s has zeros everywhere, except unity in the
position of the control DOF. As an illustration, sTu is the displacement at the control
DOF picked from the displacement vector u. Applied to Eq. (16), the displacement
increment at the control DOF is
 𝐬.Δ𝐮, = 𝐬.Δ𝐮-,, + Δ𝜆, ∙ 𝐬.𝐮. (17)

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Load Incrementation Strategies Updated January 31, 2024 Page 4

Except at the first iteration, which is addressed below, we wish the change in the
displacement at the control node to be zero. Setting Eq. (17) equal to zero and solving it
for the load factor increment yields

Δ𝜆, = −
𝐬.Δ𝐮-,,
𝐬.𝐮.

(18)

That is the essence of the displacement control algorithm. However, a special
consideration is needed at the first iteration, i.e., for i=1. It is in that iteration that we
impose the user-defined displacement increment at the control DOF. That is done by
setting Eq. (17) equal to the user-defined Duo and solving for the load increment while
recognizing that the “residual” displacement is zero at the first iteration:

 Δ𝜆) =
∆𝑢/
𝐬.𝐮.

 (19)

The implementation of a displacement control analysis in Python is demonstrated in the
“Nonlinear 2-DOF Displacement Control” example posted on this website.

Other Continuation Methods
(To be written.)

