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Rayleigh Damping Derivatives 
In the documents on the direct differentiation method for linear and nonlinear dynamics, 
the derivative of the damping matrix, ¶C/¶q, appears but is not further developed. This 
document addresses the case of Rayleigh damping, which means that the damping matrix 
is 

 𝐂 = 𝑐!𝐌+ 𝑐"𝐊 (1) 

where cM and cK are scalars, while M and K are the mass and stiffness matrix, 
respectively. Many options exist within the framework set forth by Eq. (1). The 
coefficients cM and cK can be given as numbers by the analyst, or they are calculated as 
part of the analysis from target damping specified at two natural frequencies. In the latter 
case, the value of cM and cK depends on M and K, because those matrices enter the 
eigenvalue problem. As a result, cM and cK depend on q, if that parameter enters M and 
K. Furthermore, in nonlinear dynamics, K can be the initial stiffness matrix, the 
committed tangent stiffness at the previously converged equilibrium state, or the current 
tangent stiffness updated at every Newton-Raphson iteration. In the first of those cases, 
¶K/¶q is calculated in a straightforward manner. In the latter two cases, K depends on the 
displacement, u, meaning that K may depend on q both implicitly via u and explicitly via 
the algorithm that calculates K. That complicate matters, also because cM and cK depends 
on K. Ordered by increasing complexity, the following options are considered in the 
subsequent sections of this document: 

• Coefficients cM and cK input as numbers with K not depending on u  
• Coefficients cM and cK input as numbers with K depending on u 
• Coefficients cM and cK calculated by the program with K not depending on u 
• Coefficients cM and cK calculated by the program and K depending on u 

One reference for this document is the paper entitled “Exact Sensitivity of Nonlinear 
Dynamic Response with Modal and Rayleigh Damping Formulated with the Tangent 
Stiffness” that I recently published in the ASCE Journal of Structural Engineering.”  

Given Coefficients, Initial Stiffness 
In the first and simplest case listed above, the sought derivative is obtained from the 
product rule of differentiation:  

 𝜕𝐂
𝜕𝜃 =

𝜕𝑐!
𝜕𝜃 𝐌 + 𝑐!

𝜕𝐌
𝜕𝜃 +

𝜕𝑐"
𝜕𝜃 𝐊 + 𝑐"

𝜕𝐊
𝜕𝜃  (2) 

where the value of ¶cM/¶q and ¶cK/¶q is zero or unity, depending on whether q represents 
cM or cK. Also, ¶M/¶q and ¶K/¶q are straightforward and identical to those already 
appearing in the right-hand side of the linear system of equations for ¶u/¶q in linear 
dynamics.  
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Given Coefficients, Tangent Stiffness 
Now consider the case when cM and cK are still given by the analyst as numbers, while K 
is the tangent stiffness and therefor depends on u. Now, the stiffness matrix is implicitly 
dependent upon q via the displacement response and also potentially explicitly dependent 
upon q via the calculations and assembly of K. As is done for the internal force in 
nonlinear static and dynamic analysis, that implicit and explicit dependence is expressed 
as 

 𝐂 = 𝑐!𝐌+ 𝑐"𝐊(𝐮(𝜃), 𝜃) (3) 

Differentiation yields 

𝜕𝐂
𝜕𝜃 =

𝜕𝑐!
𝜕𝜃 𝐌 + 𝑐!

𝜕𝐌
𝜕𝜃 +

𝜕𝑐"
𝜕𝜃 𝐊 + 𝑐" -

𝜕𝐊
𝜕𝐮#$%

𝜕𝐮#$%
𝜕𝜃 +

𝜕𝐊(𝐮#$%)
𝜕𝜃 .

𝐮	()*+,
/ (4) 

Interestingly, the third-order tensor ¶K/¶u appears and, importantly, the sought response 
sensitivity ¶un+1/¶q also appears in Eq. (4). To address that issue, the first term in the 
parenthesis in Eq. (4) is first substituted into the correct term in the right-hand side of the 
system of equations for ¶un+1/¶q, which yields 

 (⋯ )
𝜕𝐮#$%
𝜕𝜃 = ⋯− 𝑐"

𝜕𝐊
𝜕𝐮#$%

𝜕𝐮#$%
𝜕𝜃

(𝑎-𝐮#$% + 𝑎.𝐮# + 𝑎/�̇�# + 𝑎0�̈�#) (5) 

In index notation, with summation implied over repeated indices the, right-hand side of 
Eq. (5) reads, after some ad hoc relabelling of symbols: 

 (⋯ )
𝜕𝐮#$%
𝜕𝜃 = ⋯− 𝑐" ∙ 𝑑𝐾𝑢123 ∙ 𝑑𝑢3 ∙ 𝑎𝑢2 (6) 

Notice that the parenthesis (𝑎-𝐮#$% + 𝑎.𝐮# + 𝑎/�̇�# + 𝑎0�̈�#) is contracted with the 
middle index of the tensor ¶K/¶u. That leads to the rewrite 

 (⋯ )
𝜕𝐮#$%
𝜕𝜃 = ⋯− 𝑐"9𝑑𝐾𝑢123 ∙ 𝑎𝑢2:𝑑𝑢3

= ⋯− ;𝑐"
𝜕𝑲
𝜕𝐮#$%

∘ (𝑎-𝐮#$% + 𝑎.𝐮# + 𝑎/�̇�# + 𝑎0�̈�#)>
𝜕𝐮#$%
𝜕𝜃  

(7) 

where ∘ means contraction on the middle index, as mentioned, which facilitates the 
collection of all terms with ¶un+1/¶q on the left-hand side: 

 
;⋯+ 𝑐"

𝜕𝑲
𝜕𝐮#$%

∘ (𝑎-𝐮#$% + 𝑎.𝐮# + 𝑎/�̇�# + 𝑎0�̈�#)>
𝜕𝐮#$%
𝜕𝜃 = ⋯ (8) 

In conclusion, the use of the current tangent stiffness in Rayleigh damping leads to an 
amended effective stiffness in the linear system of equations for the response 
sensitivities.  
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Calculated Coefficients, Initial Stiffness 
Now consider the case where the coefficients cM and cK are specified by a target damping 
ratio at two natural frequencies in the following manner: 

 
𝑐! = 𝜔% ∙ 𝜔4 ∙

2 ∙ 𝜁5678+5
𝜔% + 𝜔4

 (9) 

and 

 
𝑐" =

2 ∙ 𝜁5678+5
𝜔% + 𝜔4

 (10) 

In this case, the calculation of ¶cM/¶q and ¶cK/¶q require the differentiation of the 
eigenvalue problem from which the natural frequencies are determined. That is because 
the parameter q may affect the natural frequencies, which in turn determine cM and cK. 
The direct differentiation method for calculating eigenvalue derivatives is addressed in 
another document posted near this one. Suppose the eigenvalues are denoted by the 
symbol g, with natural frequencies then being the square root of g. According to Eqs. (9) 
and (10), the sought derivatives are 

𝜕𝑐!
𝜕𝜃 =

𝜕𝜔"
𝜕𝜃 ∙ 𝜔# ∙

2 ∙ 𝜁$%&'($
𝜔" +𝜔#

+𝜔" ∙
𝜕𝜔#
𝜕𝜃 ∙

2 ∙ 𝜁$%&'($
𝜔" +𝜔#

−𝜔" ∙ 𝜔# ∙
2 ∙ 𝜁$%&'($
(𝜔" +𝜔#)#

∙ -
𝜕𝜔"
𝜕𝜃 +

𝜕𝜔#
𝜕𝜃 . (11) 

and 

𝜕𝑐!
𝜕𝜃

= −
2 ∙ 𝜁"#$%&"
(𝜔' +𝜔()(

∙ +
𝜕𝜔'
𝜕𝜃

+
𝜕𝜔(
𝜕𝜃 ,

 (12) 

where 

𝜕𝜔
𝜕𝜃

=
1
2
∙
1
√𝛾

∙
𝜕𝛾
𝜕𝜃

 (13) 

Calculated Coefficients, Tangent Stiffness 
Next, consider the most complex case listed in the introduction. Accounting for both the 
implicit and explicit dependence of cM and cK on q, the sought derivatives read 

𝜕𝑐)
𝜕𝜃

= 1
𝜕𝑐)
𝜕𝜔'

∙
𝜕𝜔'
𝜕𝛾'

∙
𝜕𝛾'
𝜕𝐊

+
𝜕𝑐)
𝜕𝜔(

∙
𝜕𝜔(
𝜕𝛾(

∙
𝜕𝛾(
𝜕𝐊

3 ∙
𝜕𝐊
𝜕𝐮

∙
𝜕𝐮
𝜕𝜃

+
𝜕𝑐)
𝜕𝜃

5
𝐮	,-.&/

 (14) 

and 

𝜕𝑐!
𝜕𝜃

= 1
𝜕𝑐!
𝜕𝜔'

∙
𝜕𝜔'
𝜕𝛾'

∙
𝜕𝛾'
𝜕𝐊

+
𝜕𝑐!
𝜕𝜔(

∙
𝜕𝜔(
𝜕𝛾(

∙
𝜕𝛾(
𝜕𝐊

3 ∙
𝜕𝐊
𝜕𝐮

∙
𝜕𝐮
𝜕𝜃

+
𝜕𝑐!
𝜕𝜃

5
𝐮	,-.&/

 (15) 
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First addressing the unconditional derivatives, the first factor is, for cM 

 𝜕𝑐)
𝜕𝜔'

= 𝜔2 ∙
2 ∙ 𝜁target
𝜔1 +𝜔2

−𝜔1 ∙ 𝜔2 ∙
2 ∙ 𝜁target
(𝜔1 +𝜔2)2

 (16) 

and 

 𝜕𝑐)
𝜕𝜔(

= 𝜔1 ∙
2 ∙ 𝜁target
𝜔1 +𝜔2

−𝜔1 ∙ 𝜔2 ∙
2 ∙ 𝜁target
(𝜔1 +𝜔2)2

 (17) 

Similarly, for cK, 

 𝜕𝑐𝐾
𝜕𝜔'

= −
2 ∙ 𝜁target
(𝜔1 +𝜔2)2

 (18) 

and 

 𝜕𝑐𝐾
𝜕𝜔(

= −
2 ∙ 𝜁target
(𝜔1 +𝜔2)2

 (19) 

The next factor is 

 𝜕𝜔'
𝜕𝛾'

=
1
2√𝛾

 (20) 

The third factor, dg/dK, is addressed in the document on eigenvalue derivatives. The 
conditional derivatives are the same as those given in Eqs. (11), (12), and (13): 

𝜕𝑐)
𝜕𝜃

5
𝐮	,-.&/

= 1
𝜕𝑐)
𝜕𝜔'

∙
𝜕𝜔'
𝜕𝛾'

∙
𝜕𝛾'
𝜕𝜃

+
𝜕𝑐)
𝜕𝜔(

∙
𝜕𝜔(
𝜕𝛾(

∙
𝜕𝛾(
𝜕𝜃

3 (21) 

and 

𝜕𝑐!
𝜕𝜃

5
𝐮	,-.&/

= 1
𝜕𝑐!
𝜕𝜔'

∙
𝜕𝜔'
𝜕𝛾'

∙
𝜕𝛾'
𝜕𝜃

+
𝜕𝑐!
𝜕𝜔(

∙
𝜕𝜔(
𝜕𝛾(

∙
𝜕𝛾(
𝜕𝜃

3 (22) 

Now reconsider the unconditional derivatives, i.e., the first term in Eqs. (14) and (15). 
Similar to the derivations behind Eq. (8), the right-hand side of the system of equations 
for the response sensitivities, ¶un+1/¶q, is addressed. The relevant terms are  

−
𝜕𝑐!
𝜕𝜃 𝐌(𝑎"𝐮#$% + 𝑎&𝐮# + 𝑎'�̇�# + 𝑎(�̈�#) −

𝜕𝑐)
𝜕𝜃 𝐊

(𝑎"𝐮#$% + 𝑎&𝐮# + 𝑎'�̇�# + 𝑎(�̈�#) (23) 

Substitution of the first term in Eqs. (14) and (15) yields 
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−.
𝜕𝑐𝑀
𝜕𝜔1

∙
𝜕𝜔1
𝜕𝛾1

∙
𝜕𝛾1
𝜕𝐊

+
𝜕𝑐𝑀
𝜕𝜔2

∙
𝜕𝜔2
𝜕𝛾2

∙
𝜕𝛾2
𝜕𝐊
0 ∙
𝜕𝐊
𝜕𝐮

∙
𝜕𝐮
𝜕𝜃

∙𝐌 ∙ (𝑎"𝐮#$% + 𝑎&𝐮# + 𝑎'�̇�# + 𝑎(�̈�#)

− .
𝜕𝑐𝐾
𝜕𝜔1

∙
𝜕𝜔1
𝜕𝛾1

∙
𝜕𝛾1
𝜕𝐊

+
𝜕𝑐𝐾
𝜕𝜔2

∙
𝜕𝜔2
𝜕𝛾2

∙
𝜕𝛾2
𝜕𝐊
0 ∙
𝜕𝐊
𝜕𝐮 ∙

𝜕𝐮
𝜕𝜃 ∙ 𝐊 ∙

(𝑎"𝐮#$% + 𝑎&𝐮# + 𝑎'�̇�# + 𝑎(�̈�#) 
(24) 

As earlier in this document, the response sensitivity, ¶u/¶q, is isolated in order to amend 
the coefficient matrix of the linear system of equations from which it is solved. Index 
notation, here informally stated as –dcMKij Bijm dum Mln an–dcKKij Bijm dum Mln an= 
= –(dcMKij Bijm Mln an) dum –(dcKKij Bijm Mln an) dum, suggests that the three-dimensional 
tensor dK/du is never fully contracted; the last index remains free and contracts with 
du/dq. In addition, note that the resulting outer product of the vectors  
--.!
-/"

∙ -/"
-𝛾"

∙ -𝛾"
-𝐊
+ -.!

-/#
∙ -/#
-𝛾#

∙ -𝛾#
-𝐊
. ∙ -𝐊

-𝐮
 and 𝐌 ∙ (𝑎"𝐮#$% + 𝑎&𝐮# + 𝑎'�̇�# + 𝑎(�̈�#) is asymmetric. 


