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Modal Damping Derivatives 
A reference for the equations presented in this document is the paper entitled “Exact 
Sensitivity of Nonlinear Dynamic Response with Modal and Rayleigh Damping 
Formulated with the Tangent Stiffness” that I recently published in the ASCE Journal of 
Structural Engineering.” Long before that, an article by Chopra & McKenna (2016) 
explains the advantages of modal damping over Rayleigh damping in nonlinear dynamic 
analysis. The modal damping matrix is 
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where M is the mass matrix, zj is the damping ratio at mode j, wj is the natural frequency 
of vibration in mode j, fj is the corresponding mode shape, and mj is the modal mass, i.e., 
fjTMfj. The objective in this document is to calculate the derivative ¶C/¶q, where q is an 
input parameter to the finite element model. The product rule of differentiation yields 
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where dmj/dq = (dfj/dq)TMfj + fjT(dM/dq)fj + fjTM(dfj/dq). The derivative of the mass 
matrix is usually trivial and the derivative of eigenvalues and eigenvectors are addressed 
in another document posted near this one. Note that once the derivative of an eigenvalue is 
known the derivative of the natural frequency is 
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where gj is an eigenvalue of the problem [K – g M]f=0.  
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Effect of using the Tangent Stiffness 
In nonlinear dynamics, there is a possibility of letting the current tangent stiffness matrix 
be used when the eigenvalue problem is solved to calculate C. In that case, the eigenvalues 
depend implicitly on q via K, which in turn is a function of u. As a result, differentiation 
of the damping matrix after convergence at increment n+1 yields 
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The last term is essentially presented in Eq. (2). The first term after the equal sign contains 
the third-order tensor formed by the derivative of the stiffness matrix with respect to the 
displacement vector. That tensor also appears in the document on derivatives of Rayleigh 
damping. The first term after the equal sign also contains the fourth-order tensor formed 
by the derivative of the damping matrix with respect to the stiffness matrix. To continue 
the derivations, it is helpful to switch to index notation. The contribution to the damping 
matrix from one mode is: 
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The derivative of the damping matrix with respect to the stiffness matrix is 
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where w is the square root of the eigenvalue g, so that dw/dg =1/(2w). The derivative of 
eigenvalues and eigenvectors with respect to the stiffness matrix is addressed in the 
document on eigenvalue derivatives posted on this webpage. Turning to the other 
derivatives, the derivative of the damping matrix with respect to the modal mass is 
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Next, the derivative of the modal mass, which reads fsMstft, with respect to each 
eigenvector is 
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Now addressing the second term in Eq. (6), the derivative of the damping matrix with 
respect to the natural frequency is 
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The derivative of the damping matrix with respect to the eigenvector is also obtained by 
differentiating Eq. (5): 
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In the right-hand side of the linear system of equations for du/dq for dynamic problems, 
the derivative of the damping matrix, i.e., dC/dq Eq. (4) multiplies the parenthesis 
(𝑎9𝐮'(% + 𝑎:𝐮' + 𝑎;𝐮̇' + 𝑎<𝐮̈'). In index notation, focusing on the first term after the 
equal sign in Eq. (4), the relevant part of that right-hand side reads 
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In order to solve the system of equations for du/dq, that quantity must be pulled out from 
the expression in Eq. (11). The resulting amendment to the coefficient matrix in the linear 
system of equations for du/dq is the following expression summed over all modes: 
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where the parenthesis (𝑎9𝐮'(% + 𝑎:𝐮' + 𝑎;𝐮̇' + 𝑎<𝐮̈') is contracted with the second 
index of the fourth-order tensor ¶C/¶K. Combining expressions, the amendment reads 
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where bi=Mijfj and summations for i, k, and q is only needed for the degrees of freedom 
that have mass.  
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