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Direct Differentiation Method: DDM 
In the context of sensitivity analysis, most of the documents posted on this website deals 
with the direct differentiation method. The objective of this method is to calculate the 
derivative of a response, denoted by u, with respect to some parameter, denoted by q. 
Structural analysis is the context, so the response may be the time-varying response, u(t), 
at a selected degree of freedom from a linear or nonlinear dynamic finite element 
analysis. Although q is one single parameter in these sensitivity-related documents, we 
often seek the gradient vector ¶u/¶x, where each entry in that vector is the response 
sensitivity ¶u/¶q. In other words, the symbol q employed here to explain the direct 
differentiation method is one of the parameters collected in the vector x appearing in 
other documents, such as those for reliability analysis. The following sections outline 
some characteristics of the direct differentiation method.  

One-time Cost 
Although the direct differentiation method is as efficient as they come, there is some 
computational cost associated with the calculation of response sensitivities. However, the 
most “intimidating” cost must be paid even before the calculations start. That is the one-
time cost of differentiating the response equations that are implemented in the finite 
element code and implementing those derivative equations alongside the code for the 
response.  The documents posted on this sensitivity webpage are intended to provide 
assistance. Once that work is done, and the code is debugged, all subsequent analyses 
produce response sensitivities in an efficient manner.  

Exact 
When you differentiate x3 to get 3x2 then that derivative is exact. That simple observation 
carries over to the direct differentiation method. Because we analytically differentiate the 
equations of the algorithm that calculates the response, we get exact results for ¶u/¶q. In 
other words, the direct differentiation method gives algorithmically consistent exact 
response sensitivities.   

Efficient 
The direct differentiation method is far more efficient than the finite difference approach, 
which is the primary competitor. The basic version of the finite difference method 
illustrates that point; consider the estimate of the response sensitivity written  

 𝜕𝑢
𝜕𝜃 ≈

𝑢(𝜃 + Δ𝜃) − 𝑢(𝜃)
Δ𝜃  (1) 

where Dq is a selected perturbation relative to the parameter value q. The finite difference 
estimate in Eq. (1) has two downsides. First, it requires two separate finite element 
analyses in order to obtain u(q+Dq) and u(q). Second, it is unclear what value for Dq to 
use. A perturbation too small may cause problems related to the numerical precision. A 
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perturbation too large could also give an inaccurate estimate of the local derivative ¶u/¶q. 
The problem is illustrated in Figure 1. The error is exhibiting a “bathtub” behaviour 
because both a too small or a too large Dq may cause error in the estimate of ¶u/¶q. 

 

 
Figure 1: The “bathtub” behaviour for error in the finite difference method. 

Works for All Analysis Types 
Regardless of which algorithm is employed to calculate the response, that algorithm can 
be differentiated. It may take some time and effort, but it can be differentiated. That 
means the direct differentiation method works for all structural analysis types: 

• Linear static analysis 
• Nonlinear static analysis 
• Linear dynamic analysis 
• Inelastic dynamic analysis 

Linear System 
A key advantage of the direct differentiation method is that the response sensitivity, 
¶u/¶q, is obtained by solving a linear system of equations. The most basic linear system 
in computational structural analysis is the equilibrium equations Ku=F, where K is the 
stiffness matrix, u is the vector of degrees of freedom, and F is the load vector. A variety 
of algorithms exist for solving such linear systems of equations. In the majority of cases, 
the response sensitivity vector, ¶u/¶q, is obtained by solving a linear system of equations 
with exactly the same coefficient matrix. (The system is always linear, but for inelastic 
dynamic analysis with certain damping models the coefficient matrix must be modified.) 
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Adjoint Method for Linear Problems 
This method, explained in another document, may clarify a confusion prompted above 
with the mixing of ¶u/¶q and ¶u/¶q. Oftentimes, we are looking for the sensitivity of the 
displacement along a specific degree of freedom, i.e., ¶u/¶q. The adjoint method 
addresses that situation, by solving a single system of equations once and for all, in order 
to subsequently calculate ¶u/¶q for an array of parameters q, simply by executing dot 
products. That circumvents the calculation of the full vector ¶u/¶q. However, whenever 
inelastic materials enter the analysis, and they usually do in nonlinear static and dynamic 
analyses, then the full vector ¶u/¶q is needed at every increment. That is because the 
derivative of “history variables” in the materials must be calculated and stored, and those 
calculations require the full vector ¶u/¶q. 

Algorithmically Consistent Tangent 
It is mentioned earlier that the coefficient matrix in the system of equations for response 
sensitivities is usually identical to the coefficient matrix in the system of equations for the 
response itself. On this note, caution is required in nonlinear analysis, static or dynamic. 
In that case, there are several options for the stiffness matrix used by the Newton-
Raphson algorithm that iterates to equilibrium. One option, referred to as Modified 
Newton-Raphson, is to use the initial stiffness matrix at each increment in those 
iterations. That does not work for the subsequent response sensitivity calculations. In 
order to obtain correct response sensitivity results with the direct differentiation method it 
is paramount that the tangent stiffness at the converged state is employed to solve for 
response sensitivities. In addition, it is important that the algorithmically consistent 
tangent is used in that system of equations. This is a reason why the Bouc-Wen material 
model is included on this sensitivity-related webpage; the difference between the 
continuum tangent and the algorithmically consistent tangent manifests in faster/slower 
convergence of the Newton-Raphson algorithm but also in exact/inexact response 
sensitivity results.  

Explicit and Implicit Dependence 
Consider a nonlinear analysis, either static or dynamic. On this website, the internal 
resisting forces of the structure are kept in the vector 𝐅+. Because 𝐅+ is implicitly dependent 
on q via u, and potentially explicitly dependent upon q via the algorithm that evaluates 𝐅+, 
the derivative of the internal resisting forces reads, via the chain rule of differentiation: 

 
𝜕𝐅+
𝜕𝜃 =

𝜕𝐅+
𝜕𝐮 ∙

𝜕𝐮
𝜕𝜃 +

𝜕𝐅+
𝜕𝜃/

𝐮	#$%&'
 (2) 

where 𝜕𝐅+ 𝜕𝐮⁄  is the aforementioned tangent stiffness matrix. The derivative 𝜕𝐅+ 𝜕𝜃⁄  
calculated for fixed displacements is readily obtained by differentiating the algorithm that 
calculates 𝐅+. However, two comments are attached to the calculation of 𝜕𝐅+ 𝜕𝜃⁄ 1

𝐮	#$%&'
, 

each addressed in their own section below. 
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Fixed u not e 
The first comment related to the previous section is that 𝜕𝐅+ 𝜕𝜃⁄ 1

𝐮	#$%&'
 is not necessarily 

evaluated for fixed section deformations and strains, although the displacements are 
fixed. Consider the hierarchy of a typical state determination, explained elsewhere on this 
website, where an element takes trial displacements from the Newton-Raphson algorithm 
and passes them to its cross-sections. In turn, each fibre-discretized cross-section gives 
trial strains to each of its materials. The point in this section is that the derivative 
𝜕𝐅+ 𝜕𝜃⁄ 1

𝐮	#$%&'
 does not necessarily translate into derivatives of section deformations 

being zero or to de/dq being zero at the material level. As an example, consider the 
contribution from material fibre number j to the section forces in a frame element: 

 𝐅+(,* = 𝐓+(,*, ∙ 𝐴* ∙ 𝜎* (3) 

where Tms is the transformation vector from the material to the section, A is the area of 
the fibre, and s is the stress in the fibre. The conditional derivative of that component of 
the internal force is, according to the previous section, albeit incorrectly, here using the 
product rule of differentiation:  

𝜕𝐅+(,*
𝜕𝜃 /

𝐮!	#$%&'

=
𝜕𝐓+(,*,

𝜕𝜃 ∙ 𝐴* ∙ 𝜎* + 𝐓+(,*, ∙
𝜕𝐴*
𝜕𝜃 ∙ 𝜎* + 𝐓+(,*, ∙ 𝐴* ∙

𝜕𝜎*
𝜕𝜃 5-	#$%&'

 (4) 

The reason why that is incorrect is that the strain, e, given to the material, does not only 
depend on the section deformations, us. In fact, the strain is e=Tmsus, which means that 
the correct derivative is not Eq. (4) but rather a version with an additional term, here 
marked with a square bracket parenthesis: 

𝜕𝐅+(,*
𝜕𝜃 /

𝐮!	#$%&'

=
𝜕𝐓+(,*,

𝜕𝜃 ∙ 𝐴* ∙ 𝜎* + 𝐓+(,*, ∙
𝜕𝐴*
𝜕𝜃 ∙ 𝜎* +⋯ 

⋯+ 7𝐓+(,*, ∙ 𝐴* ∙
𝜕𝜎*
𝜕𝜀*

∙
𝜕𝜀*
𝜕𝜃9 + 𝐓+(,*

, ∙ 𝐴* ∙
𝜕𝜎*
𝜕𝜃 5-	#$%&'

 

(5) 

where ¶s/¶e is the material stiffness, such as the modulus of elasticity, E, and, 
importantly, 

𝜕𝜀
𝜕𝜃 =

𝜕𝐓./
𝜕𝜃 ∙ 𝐮/ (6) 

Unconditional Derivatives 
The second comment is that 𝜕𝐅+ 𝜕𝜃⁄ 1

𝐮	#$%&'
 actually means 𝜕𝐅+ 𝜕𝜃⁄ 1

𝐮()*	#$%&'
. In words, it 

is the displacements at the current increment that is fixed, not previous increments of the 
nonlinear analysis. To repeat that point, the direct differentiation method seeks 
𝜕𝐅+ 𝜕𝜃⁄ 1

𝐮()*	#$%&'
 without any assumption that un and is fixed. For inelastic materials, 

which employ history variables to calculate the stress for a given trial strain, this 
necessitates the calculation and storage of unconditional derivatives 𝜕𝐅+ 𝜕𝜃⁄ . Using the 
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jargon “Phase 1” and “Phase 2” from Zhang and Der Kiureghian (1993), this means that 
the materials must first return 𝜕𝜎 𝜕𝜃⁄ |-	#$%&'  in Phase 1, in order to calculate 0𝐅

2

03
;
𝐮	#$%&'

, 

and then later calculate and store 𝜕𝜎 𝜕𝜃⁄ , as well as potentially additional derivatives of 
history variables, once 𝜕𝜀 𝜕𝜃⁄  is available from the calculation of ¶u/¶𝜃.  


