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Determinants, Cholesky, and 
Linear Systems of Equations 

For a two-by-two matrix, the inverse is 

  (1) 

where the determinant, which clearly cannot be zero, is 
  (2) 

For higher-dimension matrices the determinant, which is often written |A|, is obtained by 
adding and subtracting products of diagonals, as shown in Figure 1. For higher-dimension 
matrices the topic of matrix inversion is better dealt with in the context of the problem of 
solving systems of equations.  

 
Figure 1: Calculation of matrix determinant. 

Systems of Equations and Eigenvalue Problems 
A system of linear equations, used as an example above, is generically written  

  (3) 
where A is the coefficient matrix of known constants, x is the vector of sought unknowns, 
and b is a vector of known constants. Symbolically, the solution to the system of 
equations is 

  (4) 
In words, the inverse of the coefficient matrix features prominently, at least as a concept, 
in the solution of a linear system of equations. The inverse of a matrix only exists when 
the determinant of the coefficient matrix is zero. In fact, the system of linear equations in 
Eq.	 (3) has a unique non-trivial solution only if det(A)≠0.	 Conversely,	 if	 this	
determinant	is	zero	then	the	system	has	no	solution	or	infinitely	many	solutions.	A 
special version of Eq.	 (3)	 is	 when	 b=0. Then the system of equations is said to be 
homogeneous. A homogeneous system always has the trivial solution x=0. In fact, if 
det(A)≠0	then	the	system	only	has	the	trivial	solution.	Conversely,	 if det(A)=0	non-
trivial	solutions	exist.	A special version of Eq.	(3)	of homogeneous systems is	

A =
A11 A12

A21 A22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     ⇔      A−1 =
1

det(A)
⋅

A22 −A12

−A21 A11

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

det(A) = A11A22 − A12A21

+

A11 A12 A13
A21 A22 A23
A31 A32 A33

A11 A12 A13
A21 A22 A23
A31 A32 A33

+ +! ! !

Ax = b

x = A−1b



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Determinants, Cholesky, and Linear Systems of Equations           Updated November 27, 2023 Page 2 

  (5) 

which	is	called	an	eigenvalue	problem	that	is	written	more	generally	as 

  (6) 

Like other homogeneous systems, non-trivial solutions exist only when the determinant 
of the coefficient matrix is zero, i.e., when 

  (7) 

The roots li of Eq. (7) are called eigenvalues. Each eigenvalue has one eigenvector, or 
eigen-mode, associated with it. The eigenvectors are not unique; they are determined by 
setting one of the elements of x in Eq. (6) equal to unity and solving for the others. This 
is repeated for each eigenvalue to obtain all eigenvectors. Any scaled version of an 
eigenvector is also an eigenvector because the choice of unity of one element is arbitrary. 
Upon computing the eigenvalues of a square matrix A it is possible to diagonalize it into 
a matrix D that has the eigenvalues on the diagonal:  

  (8) 
where X is a matrix with the eigenvectors of A as diagonals. Within the numerical 
methods for linear algebra there are several methods for solving linear systems of 
equations.  

Decomposition and Substitution 
One approach is LU-factorization, in which the coefficient matrix is decomposed into a 
lower and an upper triangular matrix: 
  (9) 
where L is a lower-tringular matrix and U is an upper-triangular matrix, both having 
diagonal elements that are typically different from zero and unity. Using this 
decomposition, Eq.	(3) reads 
  (10) 

where the auxiliary vector  

  (11) 

has been defined. Assuming L and U have already been determined, the vector y is 
determined by solving Eq. (10), i.e., by the forward substitution algorithm 

  (12) 

where n is the number of equations. Once y is determined, x is determined by solving Eq. 
(11), i.e., by the backward substitution algorithm 

Ax = λx     ⇔      A − λI( )x = 0

A − λB( )x = 0

det A − λB( ) = 0
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  (13) 

If the Cholesky decomposition is used (see below) then U=LT and Eq. (13) is readily 
modified to accommodate that situation by setting Uij=Lji (notice the switch of indices) 
and Uii=Lii. If the system of equations needs to be solved repeated with the same A-
matrix but different right-hand-sides b then the decomposition is done once while the 
forward/backward substitution is repeated for each b-vector.  

Cholesky Decomposition 
Cholesky decomposition is one of the methods to decompose the coefficient matrix. It is 
based on selecting U=LT so that  

  (14) 
The Cholesky decomposition, which is named after Andre-Louis Cholesky (1857-1918) 
and takes a symmetric and positive definite matrix as input, has broader use than solving 
systems of equations. For example, it appears in reliability analysis when random 
variables are transformed into the standard normal variable space. Several algorithms 
exist for obtaining L and its inverse (Kreyszig 1988). One calculates the components of 
the matrix row-by-row from left to right: 

  (15) 

followed by the calculation of L-1 row-by-row from right to left: 

  (16) 

For applications in reliability analysis, notice that the lower-triangular Cholesky 
decomposition of a correlation matrix that reads 
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1 0
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Determinant and Matrix Inversion 
Here we return to the objective of solving Eq.	 (3),	 now	 using	 Cramer’s rule and 
determinants. This approach is inefficient compared with decomposition and iterative 
algorithms and it essentially establishes the inverse of the coefficient matrix A to obtain 
the solution as  

  (19) 
The approach is often referred to as Cramer’s rule after Gabriel Cramer (1704–1752). 
Interestingly, it can be used to solve for individual values xi leaving the other values of x 
unknown. One way to write Cramer’s rule is 

  (20) 

where det(Ai) is the determinant of Ai, which is the matrix obtained by replacing column 
number i in A by b. Another way to write Cramer’s rule is 

  (21) 

where adj(A) is the adjoint matrix of A, i.e., the transposed matrix of cofactors. For a 
square matrix A the cofactor of a component is 

  (22) 

where Mij is the minor 

  (23) 

where Areduced is the reduced version of A with row i and column j removed. This leads to 
a recursive formula when the determinant is calculated as the sum over an arbitrary row 
or column: 

  (24) 

In the C++ implementation the sum is always taken over the first row, and the iteration 
takes place when the determinant-algorithm calls the cofactor-algorithm. Once the 
algorithms to calculate cofactors and determinant are in place the solution to Ax=b is 
calculated using Eq. (20). It can also be solved by establishing the inverse and calculating 
x=A-1b. 

Other Algorithms and Applications for the Determinant 
The algorithm above is only one of several to calculate the determinant. Liebniz and 
Laplace had their respective algorithms, and using LU decomposition is another 
approach. The determinant is defined for square matrices and was originally named by 
Gauss (Lagrange had earlier called it resultant) because of its ability to predict whether a 
solution to Ax=b exists. Chinese scholars had understood similar concepts several 
hundred years BC and people like Cardano and Leibniz had also used such tests. In 
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passing, it is noted that for an inhomogeneous system of equations, i.e., when b is 
nonzero, a zero-valued determinant indicates there exist either infinite or no solutions, 
i.e., the determinant must be non-zero to obtain a unique solution. Conversely, for 
homogeneous systems (b=0) a zero determinant is the only way to get nontrivial 
solutions, which there will be an infinite number of. Also, a matrix A is said to be 
positive definite if the scalar zTAz is positive for every non-zero column vector z. The 
determinant of a positive definite matrix is always positive; hence, a positive definite 
matrix is always nonsingular. A matrix is singular if its determinant is zero, i.e., a matrix 
with nonzero determinant is non-singular. In practice the determinant is rarely calculated 
to check if Ax=b is solvable but it does indeed appear in Cramer’s approach for solving 
that system of linear equations, as seen above. 


