Beam with Rigid Part

Consider the beam element shown below. It has four degrees of freedom and an infinitely rigid part, marked with a thick black line. The element is intended to model the element circled in the figure on the left-hand side. It is understood that the infinitely rigid part is intended to model the shear wall, which is much stiffer than the elastic beam element, which has bending stiffness denoted $E I$.

Stiffness matrix by the classical stiffness method

The first column of the stiffness matrix is established by setting the first degree of freedom equal to one, while keep all the others at zero:

\qquad
Second column:

$$
\text { column2 }=\left\{-\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}}, \frac{4 \mathrm{EI}}{\mathrm{~L}}, \frac{6 \mathrm{EI}}{\mathrm{~L}^{2}}, \frac{2 \mathrm{EI}}{\mathrm{~L}}+\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} \mathrm{a}\right\} ;
$$

Third column:

Fourth column:

$$
\begin{aligned}
& \text { column } 4=\left\{-\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}}-\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}} \mathrm{a}, \frac{2 \mathrm{EI}}{\mathrm{~L}}+\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} \mathrm{a}, \frac{6 \mathrm{EI}}{\mathrm{~L}^{2}}+\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}} \mathrm{a}\right. \\
& \left.\left(\frac{4 \mathrm{EI}}{\mathrm{~L}}+\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} \mathrm{a}\right)+\left(\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} a+\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}} \mathrm{a}^{2}\right)\right\}
\end{aligned}
$$

In summary, that stiffness matrix is:

KfinalManual $=$ \{column1, column2, column3, column4\};
KfinalManual / / MatrixForm
which yields:

$$
\left(\begin{array}{cccc}
\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}} & -\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} & -\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}} & -\frac{12 a \mathrm{EI}}{\mathrm{~L}^{3}}-\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} \\
-\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} & \frac{4 \mathrm{EI}}{\mathrm{~L}} & \frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} & \frac{6 \mathrm{EEI}}{\mathrm{~L}^{2}}+\frac{2 \mathrm{EI}}{\mathrm{~L}} \\
-\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}} & \frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} & \frac{12 \mathrm{EI}}{\mathrm{~L}^{3}} & \frac{12 a \mathrm{EI}}{\mathrm{~L}^{3}}+\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} \\
-\frac{12 a \mathrm{EI}}{\mathrm{~L}^{3}}-\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} & \frac{6 a \mathrm{EI}}{\mathrm{~L}^{2}}+\frac{2 \mathrm{EI}}{\mathrm{~L}} & \frac{12 a \mathrm{EI}}{\mathrm{~L}^{3}}+\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} & \frac{12 \mathrm{a}^{2} \mathrm{EI}}{\mathrm{~L}^{3}}+\frac{12 a \mathrm{EI}}{\mathrm{~L}^{2}}+\frac{4 \mathrm{EI}}{\mathrm{~L}}
\end{array}\right)
$$

Check that the stiffness matrix is symmetric:
SymmetricMatrixQ[KfinalManual]
which yields: True

Stiffness matrix by the computational stiffness method, i.e., using a transformation matrix

The transformation matrix $\mathbf{T}_{1 f}$ is obtained by setting the DOFs of the Final configuration equl to one, one at a time, which forms the columns of \mathbf{T}_{lf} :
$\operatorname{Tlf}=\{\{1,0,0,0\},\{0,1,0,0\},\{0,0,1, \mathrm{a}\},\{0,0,0,1\}\} ;$
Tlf // MatrixForm
which yields: $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1\end{array}\right)$
The stiffness matrix in the local configuration is:

$$
\begin{aligned}
\mathrm{KI}= & \left\{\left\{\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}},-\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}},-\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}},-\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}}\right\},\left\{-\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}}, \frac{4 \mathrm{EI}}{\mathrm{~L}}, \frac{6 \mathrm{EI}}{\mathrm{~L}^{2}}, \frac{2 \mathrm{EI}}{\mathrm{~L}}\right\},\right. \\
& \left.\left\{-\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}}, \frac{6 \mathrm{EI}}{\mathrm{~L}^{2}}, \frac{12 \mathrm{EI}}{\mathrm{~L}^{3}}, \frac{6 \mathrm{EI}}{\mathrm{~L}^{2}}\right\},\left\{-\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}}, \frac{2 \mathrm{EI}}{\mathrm{~L}}, \frac{6 \mathrm{EI}}{\mathrm{~L}^{2}}, \frac{4 \mathrm{EI}}{\mathrm{~L}}\right\}\right\} ;
\end{aligned}
$$

Kl / / MatrixForm
which yields:

$$
\left(\begin{array}{cccc}
\frac{12 E I}{L^{3}} & -\frac{6 E I}{L^{2}} & -\frac{12 E I}{L^{3}} & -\frac{6 E I}{L^{2}} \\
-\frac{6 E I}{L^{2}} & \frac{4 E I}{L} & \frac{6 E I}{L^{2}} & \frac{2 E I}{L} \\
-\frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} & \frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} \\
-\frac{6 E I}{L^{2}} & \frac{2 E I}{L} & \frac{6 E I}{L^{2}} & \frac{4 E I}{L}
\end{array}\right)
$$

That means that the final stiffness matrix, using this approach, comes out the same as in a):

$$
\begin{aligned}
& \text { KfinalTransform = Transpose[Tlf].Kl.Tlf; } \\
& \text { KfinalTransform // MatrixForm }
\end{aligned}
$$

$$
\text { which yields: }\left(\begin{array}{cccc}
\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}} & -\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} & -\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}} & -\frac{12 a \mathrm{EI}}{\mathrm{~L}^{3}}-\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} \\
-\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} & \frac{4 \mathrm{EI}}{\mathrm{~L}} & \frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} & \frac{6 a \mathrm{EI}}{\mathrm{~L}^{2}}+\frac{2 \mathrm{EI}}{\mathrm{~L}} \\
-\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}} & \frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} & \frac{12 \mathrm{EI}}{\mathrm{~L}^{3}} & \frac{12 a \mathrm{EI}}{\mathrm{~L}^{3}}+\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} \\
-\frac{12 a \mathrm{EI}}{\mathrm{~L}^{3}}-\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} & \frac{6 a \mathrm{EI}}{\mathrm{~L}^{2}}+\frac{2 \mathrm{EI}}{\mathrm{~L}} & \frac{12 a \mathrm{EI}}{\mathrm{~L}^{3}}+\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} & a\left(\frac{12 a \mathrm{EI}}{\mathrm{~L}^{3}}+\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}}\right)+\frac{6 a \mathrm{EI}}{\mathrm{~L}^{2}}+\frac{4 \mathrm{EI}}{\mathrm{~L}}
\end{array}\right)
$$

Compare with the result from a):
difference $=$ KfinalManual - KfinalTransform // Simplify // MatrixForm
which yields: $\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

