A short course on

Indeterminate Structures

This video: Stiffness Method

Terje's Toolbox is freely available at <u>terje.civil.ubc.ca</u> It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng., Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Overview of Methods

Reference: Slope Deflection Method

- 1. Identify the degrees of freedom, i.e., the unknown displacements and rotations
- 2. Establish equilibrium equations in terms of end moments
- 3. Substitute slope-deflection equation for end moments
- 4. Solve for the unknown displacements and rotations
- 5. Substitute displacements and rotations into slope-deflection equation to get end moments
- 6. Draw bending moment diagram between known end moment values

Reference: Slope Deflection Method

- 2. Establish equilibrium equations in terms of end moments
- 3. Substitute slope-deflection equation for end moments

$$\begin{pmatrix} & \\ & \\ & \end{pmatrix} \theta_A + \begin{pmatrix} & \\ & \end{pmatrix} \theta_B = \text{loads}$$
$$\begin{pmatrix} & \\ & \\ & \\ & \\ & \end{pmatrix} \theta_A + \begin{pmatrix} & \\ & \\ & \end{pmatrix} \theta_B = \text{loads}$$

Stiffness Method

Stiffness Method Procedure

- 1. Identify the degrees of freedom, i.e., the unknown displacements and rotations
- 2. Establish stiffness matrix, K
- 3. Establish load vector, F
- 4. Solve for the unknown displacements and rotations
- 5. Substitute displacements and rotations into slope-deflection equation to get end moments
- 6. Draw bending moment diagram between known end moment values

The Stiffness Concept

Equilibrium: K u = F

More Degrees of Freedom

 $K_{11} u_1 + K_{12} u_2 = F_1$ $K_{21} u_1 + K_{22} u_2 = F_2$

 $\mathbf{K} \mathbf{u} = \mathbf{F}$

$$K_{ij} u_j = F_i$$

 K_{ij} = force along DOF number *i* due to a unit displacement or rotation along DOF number *j* u_j = unknown displacement or rotation along DOF number *j* F_i = force along DOF number *i* due to external loads

Establish K

- 1. Sketch the displaced shape of the structure for a unit displacement or rotation along DOF number *j*, with all other DOFs clamped
- 2. Determine the force along every DOF to maintain this displaced shape, i.e., K_{ij} , which form column number *j* of the stiffness matrix
- 3. Carry out Step 1 and 2 for all DOFs to establish column by column of the stiffness matrix
- 4. Check that the **K** is symmetric with only positive entries on the diagonal

Formula Sheet

Load Vector

External forces applied to structure: Ku = F

Split member forces and point loads: $Ku + \overline{F} = \dot{F}$

Total load vector: $Ku = \dot{F} - \overline{F} = F$

Member end forces after solving equilibrium equations: $\mathbf{F} = \mathbf{K}\mathbf{u} + \overline{\mathbf{F}}$

Formula Sheet for \overline{F}

\mathbf{r}

More lectures:

Terje's Toobox:

terje.civil.ubc.ca