A short course on

## **Indeterminate Structures**

This video: Slope Deflection Method

Terje's Toolbox is freely available at <u>terje.civil.ubc.ca</u> It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng., Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

### **Overview of Methods**



#### **Two Worlds**

#### **Displacement methods**

Degrees of freedom (displacements and rotations) are considered unknown

Impose equilibrium in order to solve for the unknowns

#### **Force methods**

As many redundant forces as the degree of static indeterminacy are considered unknown

Impose kinematic **compatibility** in order to solve for the unknowns

#### **Slope Deflection Method**

Establish equilibrium equations "manually" along each DOF



All equilibrium equations are formulated in terms of end moments

The unknowns are displacements & rotations

### **Slope Deflection Equation**

Relates end moments to displacements & rotations



#### **Rotations**

Derivation using virtual work



#### **Solve for End Moments**



$$M_{AB} = \frac{4EI}{L}\theta_A + \frac{2EI}{L}\theta_B = \frac{2EI}{L} \cdot \left(2\theta_A + \theta_B\right)$$

$$M_{BA} = \frac{4EI}{L}\theta_{B} + \frac{2EI}{L}\theta_{A} = \frac{2EI}{L} \cdot \left(2\theta_{B} + \theta_{A}\right)$$

### **Generalized Notation**



$$M_{NF} = \frac{2EI}{L}(2\theta_N + \theta_F)$$

### **Displacements**



$$M_{NF} = \frac{2EI}{L}(2\theta_N + \theta_F) = \frac{2EI}{L}(2(-\psi) + (-\psi)) = -\frac{2EI}{L} \cdot 3\psi$$

#### An additional source of end moments

Fixed-end moments (FEM) from loading



Final slope deflection equation:

$$M_{NF} = \frac{2EI}{L}(2\theta_N + \theta_F - 3\psi) + FEM_{NF}$$

#### **Formula Sheet**



#### **Procedure**

- 1. Identify the degrees of freedom, i.e., the unknown displacements and rotations
- 2. Establish equilibrium equations in terms of end moments
- 3. Substitute slope-deflection equation for end moments
- 4. Solve for the unknown displacements and rotations
- 5. Substitute displacements and rotations into slope-deflection equation to get end moments
- 6. Draw bending moment diagram between known end moments



# $\mathbf{r}$

-----





More lectures:

Terje's Toobox:

terje.civil.ubc.ca