A short course on

Indeterminate Structures

This video:
Slope Deflection Method

Terje's Toolbox is freely available at terje.civil.ubc.ca

Overview of Methods

Truss and frame structures

Two Worlds

Displacement methods
Degrees of freedom (displacements and rotations) are considered unknown
Impose equilibrium in order to solve for the unknowns

Force methods

As many redundant forces as the degree of static indeterminacy are considered unknown Impose kinematic compatibility in order to solve for the unknowns

Slope Deflection Method

Establish equilibrium equations "manually" along each DOF

Rotation DOFs:

All equilibrium equations are formulated in terms of end moments
The unknowns are displacements \& rotations

Slope Deflection Equation

Relates end moments to displacements \& rotations

Rotations

Derivation using virtual work

Solve for End Moments

$$
\begin{aligned}
& M_{A B}=\frac{4 E I}{L} \theta_{A}+\frac{2 E I}{L} \theta_{B}=\frac{2 E I}{L} \cdot\left(2 \theta_{A}+\theta_{B}\right) \\
& M_{B A}=\frac{4 E I}{L} \theta_{B}+\frac{2 E I}{L} \theta_{A}=\frac{2 E I}{L} \cdot\left(2 \theta_{B}+\theta_{A}\right)
\end{aligned}
$$

Generalized Notation

$$
M_{N F}=\frac{2 E I}{L}\left(2 \theta_{N}+\theta_{F}\right)
$$

Displacements

An additional source of end moments

Fixed-end moments (FEM) from loading

Final slope deflection equation:

$$
M_{N F}=\frac{2 E I}{L}\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+F E M_{N F}
$$

Formula Sheet

Procedure

1. Identify the degrees of freedom, i.e., the unknown displacements and rotations
2. Establish equilibrium equations in terms of end moments
3. Substitute slope-deflection equation for end moments
4. Solve for the unknown displacements and rotations
5. Substitute displacements and rotations into slope-deflection equation to get end moments
6. Draw bending moment diagram between known end moments

Example

$$
T_{1}^{2}
$$

More lectures:

Terje's Toobox:
terje.civil.ubc.ca

