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Multi-Degree-of-Freedom 
Dynamics 

For reference, the governing equation for linear single-degree-of-freedom (SDOF) 
problems is the “equation of motion,” which reads 
  (1) 

To arrive at the corresponding equations for multi-degree-of-freedom (MDOF) problems 
it is not Eq.  Page 1 that serves as the starting point. Rather, one considers the “strong 
form,” i.e., differential equation for the boundary value problem at hand, say, a beam in 
bending. Via the “weak form” and substitution of shape functions, each associated with a 
DOF, the problem is discretized. Following that approach, the stiffness matrix, K, the 
mass matrix, M, and the load vector F are derived in other documents on this website, 
leading to the following linear system of equilibrium equations: 
  (2) 
where u is the vector of DOFs and each dot above u means one differentiation with 
respect to time.  

Damping 
While inertia forces are functions of acceleration, and elastic forces are functions of 
displacement, damping forces are functions of velocity. Sometimes called viscous forces, 
they are represented by the second term of Eq.  Page 1. In SDOF dynamic, damping 
is often specified as the damping ratio, x, defined as 

  (3) 

where C is the damping coefficient in Eq.  Page 1. Damping ratios around 3% to 5% 
are often assumed for structural systems. Now consider the following system of 
equilibrium equations for MDOF problems:  

 𝐌�̈� + 𝐂�̇� + 𝐅((𝐮, �̇�) = 𝐅 (4) 

where 𝐅((𝐮, �̇�) = 𝐊𝐮 for linear problems. The velocity enters in the second and third 
terms, presenting two venues for introducing damping. Formulation of the internal 
resisting forces, i.e., the material models, to include velocity-dependent forces in 𝐅((𝐮, �̇�) 
is possible but not the most common approach. Rather, artificial damping is introduced 
by creating some damping matrix, C.  The most common form of C is Rayleigh damping, 
which is written as a linear combination of the mass and stiffness matrix (Chopra 1995): 

  (5) 

The two constants a and b can be determined to target the damping ratio x at the 
frequencies w1 and w2 (Chopra 1995): 

M ⋅ !!u(t)+C ⋅ !u(t)+K ⋅u(t)= F(t)

M!!u+Ku = F

ξ = C
2 ⋅ K ⋅M

C = a ⋅M + b ⋅K
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"∙$

%!&%"
2 (6) 

 𝑏 = 1 "∙$
%!&%"

2 (7) 

but caution must be exercised because the damping at other frequencies can be 
dramatically different from the target damping ratios. For this reason, it is prudent to plot 
the function 

  (8) 

to view the distribution of the damping on different frequencies.  

Eigenvalue Analysis 
Undamped SDOF problems are found to have the natural frequency of vibration 

  (9) 

MDOF problems have as many natural frequencies as the number of DOFs. They are 
determined by first defining the trial solution 

  (10) 

Substitution of Eq. (10) into 

  (11) 
yields the eigenvalue problem 

  (12) 

where the eigenvalues, i.e., natural frequencies of vibration are determined from 

  (13) 

and the corresponding eigenmodes, i.e., shapes of the structure in each mode are 
determined by setting one component of uo equal to unity and solving for the others.  

Modal Analysis 
Suppose a structure has N DOFs and that the eigenmode for mode number n from the 
previous section, normalized to have unit norm, corresponding to the natural frequency 
wn, is denoted fn. If those modes are collected in the matrix F and we set u=Fq, where q 
are generalized coordinates, as mentioned in the document on Energy Methods, then the 
linear version of Eq. (4) without external loads reads 
  (14) 

Pre-multiplying that equation with FT yields 

ξ(ω ) = a
2 ⋅ω

+ b ⋅ω
2

ω n =
k
m

u(t) = uo ⋅sin(ω ⋅ t)

M!!u+Ku = 0

K −ω 2 ⋅M( )uo = 0

det K −ω 2 ⋅M( ) = 0

MΦ!!q+CΦ !q+KΦq = F
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  (15) 

It turns out that all the matrices in square brackets are diagonal matrices, as long as C is 
defined as earlier by Rayleigh damping. In other words, the mode shapes decouple the 
system of equations into SDOF problems. This decoupling is referred to as modal 
analysis. Each SDOF problem is obtained by picking values from the diagonalized 
matrices in Eq. (15) or in the following manner. Consider the eigenvector fn, normalized 
to unit norm. Now consider the special case u=fn.qn. With that displacement vector, the 
linear version of Eq. (4), without external loads reads 
  (16) 

Pre-multiplying that equation with the transpose of fn yields 

  (17) 

where the Mn=modal mass, Cn=modal damping, Kn=modal stiffness, and Fn=modal force 
for vibration mode number n. The modal decoupling that is described in this section is, 
for linear problems and Rayleigh damping, an alternative to the time-stepping methods 
covered in another document on this webpage.  

Ground Motion 
When ground motions are applied to the structure then the force vector is 

  (18) 

where  is the acceleration in the i-direction and G is a matrix with as many columns as 
there are ground motion directions. Essentially, G assigns ground motion accelerations to 
the appropriate degrees of freedom. For example, for a 3D ground motion applied to the 
cantilevered column shown in Figure 1, the force vector is:  

  (19) 

ΦTMΦ⎡⎣ ⎤⎦ !!q+ ΦTCΦ⎡⎣ ⎤⎦ !q+ ΦTKΦ⎡⎣ ⎤⎦q = ΦTF

Mφn ⋅ !!qn +Cφn ⋅ !qn +Kφn ⋅qn = F

φn
TMφn( )
Mn

!"# $#
⋅ %%qn + φn

TCφn( )
Cn

!"# $#
⋅ %qn + φn

TKφn( )
Kn

!"# $#
⋅qn = φn

TF
Fn
!

F = −M ⋅ Γ ⋅

!!ugx
!!ugy
!!ugz

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

!!ugi

F = −M ⋅

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋅

!!ugx
!!ugy
!!ugz

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Multi-Degree-of-Freedom Dynamics Updated September 6, 2023 Page 4 

 
Figure 1: Cantilever with mass. 
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