Probabilities and Random Variables

This video:
Classical \& Bayesian Statistical Inference

Terje's Toolbox is freely available at terje.civil.ubc.ca

Statistical Inference

Geometrical

Classical
Bayesian

Compare lengths, areas, volumes

Averaging
observed data

Consider model
parameters as random variables

Geometry

$$
F(x)=P(X \leq x)=\left\{\begin{array}{l}
\left(\frac{L_{X \leq x}}{L_{\text {total }}}\right) \\
\left(\frac{A_{X \leq x}}{A_{\text {total }}}\right) \\
\left(\frac{V_{X \leq x}}{V_{\text {total }}}\right)
\end{array}\right.
$$

Diagrams

- Histogram
- Frequency diagram

- Cumulative frequency diagram
- Scatter diagram

Mean

Average, expectation

$$
\bar{x}=\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}
$$

Standard Deviation

Basic expression:

$$
s^{2}=\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

$n-1$ for the expectation of s to match σ

Computationally more efficient expression:

$$
\begin{aligned}
s^{2} & =\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =\frac{1}{n-1} \cdot\left(\sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n} \bar{x}^{2}-\sum_{i=1}^{n} 2 x_{i} \bar{x}\right) \\
& =\frac{1}{n-1} \cdot\left(\left(\sum_{i=1}^{n} x_{i}^{2}\right)+n \bar{x}^{2}-2 n \bar{x}^{2}\right) \\
& =\frac{1}{n-1} \cdot\left(\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n \cdot \bar{x}^{2}\right)
\end{aligned}
$$

Correlation Coefficient

$$
\rho=\frac{1}{n-1} \cdot\left(\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \cdot \bar{x} \cdot \bar{y}}{s_{x} \cdot s_{y}}\right)
$$

Bayesian Updating

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{2} \mid E_{1}\right)}{P\left(E_{2}\right)} \cdot P\left(E_{1}\right)
$$

$$
f^{\prime \prime}(\theta)=\frac{L(\theta)}{c} \cdot f^{\prime}(\theta)
$$

$$
c=\int_{-\infty}^{\infty} L(\theta) \cdot f^{\prime}(\theta) d \theta
$$

Likelihood Function
 $$
f^{\prime \prime}(\theta)=\frac{L(\theta)}{c} \cdot f^{\prime}(\theta)
$$

"Probability of observing the observation"

Suppose we have observed $X=x$

```
L(0)\propto\textrm{P}(X=x|0)\proptof(x,0), where 0 is, for example, the mean
    \proptop(x,0), where 0 is, for example, the failure probability in Bernoulli trials
```

Suppose we have observed $X<x$

$$
L(\theta) \propto \mathrm{P}(X<x \mid \theta)=F(x, \theta)
$$

Prior

$$
f^{\prime \prime}(\theta)=\frac{L(\theta)}{c} \cdot f^{\prime}(\theta)
$$

Previous posterior

Uniform and non-informative prior

Conjugate prior:
$f^{\prime \prime}(\theta)$ becomes same type as $f^{\prime}(\theta)$

Leads to updating rules

Updating Rules for Conjugate Priors

Random variable	Observation	Conjugate prior	Updating rule
$X \sim \operatorname{Binomial}(p, n)$	x occurrences in n trials	$p \sim \operatorname{Beta}(a, b)$	$a^{\prime \prime}=a^{\prime}+x$ $b^{\prime \prime}=b^{\prime}+n-x$
$X \sim \operatorname{Geometric}(p)$	x trials until first occurrence	$p \sim \operatorname{Beta}(a, b)$	$a^{\prime \prime}=a^{\prime}+1$ $b^{\prime}=b^{\prime}+x-1$
$X \sim$ NegativeBinomial (p, k)	x trials to $k^{\text {th }}$ occurrence	$p \sim \operatorname{Beta}(a, b)$	$a^{\prime \prime}=a^{\prime}+k$ $b^{\prime}=b^{\prime}+x-k$
$X \sim \operatorname{Poisson}(\lambda, T)$	x occurrences in T	$\lambda \sim \operatorname{Gamma}(v, k)$	$k^{\prime}=k^{\prime}+x$ $v^{\prime}=v^{\prime}+T$
$X \sim \operatorname{Exp}(\lambda)$	n observations of x	$\lambda \sim \operatorname{Gamma}(v, k)$	$k^{\prime}=k^{\prime}+n$ $v^{\prime}=v^{\prime}+\sum x_{i}$

More Updating Rules

$X \sim \operatorname{Normal}(\underline{\mu}, \underline{\sigma})$	n observations of x	$\underline{\mu} \sim \operatorname{Normal}(\mu, \sigma)$	$\begin{gathered} \mu^{\prime \prime}=\frac{\bar{x} \cdot \sigma^{12}+\mu^{\prime}\left(\frac{\underline{\sigma}^{2}}{n}\right)}{\sigma^{12}+\frac{\underline{\sigma}^{2}}{n}} \\ \sigma^{\prime \prime}=\sqrt{\frac{\sigma^{12} \cdot\left(\frac{\underline{\sigma}^{2}}{n}\right)}{\sigma^{12}+\left(\frac{\underline{\sigma}^{2}}{n}\right)}} \end{gathered}$
$X \sim \operatorname{Lognormal}(\zeta, \underline{\sigma})$	n observations of x with average \bar{x}	$\zeta \sim \operatorname{Normal}(\mu, \sigma)$	$\begin{aligned} & \mu^{\prime \prime}=\frac{\overline{\ln (x)} \cdot \sigma^{\prime 2}+\mu^{\prime}\left(\frac{\underline{\sigma}^{2}}{n}\right)}{\sigma^{\prime 2}+\frac{\underline{\sigma}^{2}}{n}} \\ & \sigma^{\prime \prime}=\sqrt{\frac{\sigma^{\prime 2} \cdot\left(\frac{\underline{\sigma}^{2}}{n}\right)}{\sigma^{\prime 2}+\left(\frac{\sigma^{2}}{n}\right)}} \end{aligned}$

Posterior Statistics

$$
\begin{gathered}
\mu_{\theta}=\int_{-\infty}^{\infty} \theta \cdot f^{\prime \prime}(\theta) d \theta \\
\sigma_{\theta}^{2}=\int_{-\infty}^{\infty}\left(\theta-\mu_{\theta}\right)^{2} \cdot f^{\prime \prime}(\theta) d \theta \\
\mathbf{M}_{\theta}=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \boldsymbol{\theta} \cdot f^{\prime \prime}(\boldsymbol{\theta}) d \boldsymbol{\theta} \\
\boldsymbol{\Sigma}_{\boldsymbol{\theta}}=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}\left(\boldsymbol{\theta}-\mathbf{M}_{\theta}\right) \cdot\left(\boldsymbol{\theta}-\mathbf{M}_{\theta}\right)^{T} \cdot f^{\prime \prime}(\boldsymbol{\theta}) d \boldsymbol{\theta}
\end{gathered}
$$

Predictive Distribution

Total probability integration:

$$
f(x)=\int_{-\infty}^{\infty} f(x \mid \boldsymbol{\theta}) \cdot f^{\prime \prime}(\boldsymbol{\theta}) d \boldsymbol{\theta}
$$

More lectures:

Terje's Toobox:
terje.civil.ubc.ca

