A short course on

Structural Members

This video:
Warping Torsion

Terje's Toolbox is freely available at terje.civil.ubc.ca
It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng.,
Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Warping

Warping

No warping

Axial Stress Develops

Do they warp?

Do NOT warp

Warp!

Wide-flange Cross-section

$$
\begin{aligned}
& \lambda_{\lambda} \lambda^{z} \\
& T_{\text {warping }}=h \cdot V \\
& V=\frac{d M}{d x} \Rightarrow T_{\text {warping }}=h \cdot \frac{d M}{d x} \\
& M=E I_{\text {flange }} \cdot \frac{d^{2} w}{d x^{2}} \Rightarrow T_{\text {warping }}=h \cdot E I_{\text {flange }} \cdot \frac{d^{3} w}{d x^{3}} \\
& w=-\phi \cdot \frac{h}{2} \quad \Rightarrow \quad T_{\text {warping }}=-\frac{h^{2}}{2} \cdot E I_{\text {flange }} \cdot \frac{d^{3} \phi}{d x^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& T_{\text {warping }} \stackrel{\downarrow}{ }=-E C_{w} \cdot \frac{d^{3} \phi}{d x^{3}}
\end{aligned}
$$

Saint Venant + Warping Torsion

$$
\begin{aligned}
& T=G J \cdot \frac{d \phi}{d x}-E C_{w} \cdot \frac{d^{3} \phi}{d x^{3}} \\
& \\
& E C_{w} \cdot \frac{d^{4} \phi}{d x^{4}}-G J \cdot \frac{d^{2} \phi}{d x^{2}}=m_{x} \\
& \quad \gamma^{4}-\frac{G J}{E C_{w}} \cdot \gamma^{2}=0
\end{aligned}
$$

$$
\phi(x)=C_{1} \cdot \sinh \left(\sqrt{G J / E C_{w}} \cdot x\right)+C_{2} \cdot \cosh \left(\sqrt{G J / E C_{w}} \cdot x\right)+C_{3} \cdot x+C_{4}
$$

$$
\phi(x)=\frac{1}{\sqrt{G J / E C_{w}}} \cdot \frac{T_{o}}{G J} \cdot\binom{\tanh \left(\sqrt{G J / E C_{w}} \cdot L\right) \cdot\left[\cosh \left(\sqrt{G J / E C_{w}} \cdot x\right)-1\right]}{-\sinh \left(\sqrt{G J / E C_{w}} \cdot x\right)+\sqrt{G J / E C_{w}} \cdot x}
$$

How is the torque carried?

Bi-moment

$$
B \equiv M \cdot h
$$

$$
B=E I \cdot \frac{d^{2} w}{d x^{2}} \cdot h
$$

$$
B=-E I \cdot \frac{d^{2} \phi}{d x^{2}} \cdot \frac{h^{2}}{2}
$$

$$
B=-E C_{w} \cdot \frac{d^{2} \phi}{d x^{2}}
$$

Unified Bending \& Torsion

Equilibrium

$$
q_{z}=-\frac{d V_{z}}{d x}
$$

$$
V_{z}=\frac{d M_{y}}{d x}
$$

$$
m_{x}=-\frac{d T}{d x}
$$

Section Integration

$$
\begin{gathered}
N=\int_{A} \sigma_{x} d A \\
M_{z}=-\int_{A} \sigma_{x} \cdot y d A \\
M_{y}=\int_{A} \sigma_{x} \cdot z d A \\
B \equiv-\int_{A} \sigma_{x} \cdot \Omega d A
\end{gathered}
$$

Material Law

$$
\sigma_{x}=E \cdot \varepsilon_{x}
$$

Kinematic Compatibility

$$
\frac{\tilde{v}=-v \cdot \cos (\alpha)+w \cdot \sin (\alpha}{d s}=-\cos (\alpha) \Longleftarrow \underbrace{\tilde{v}}=\sin (\alpha) \xlongequal{d s}
$$

$$
\tilde{v}=v \cdot \frac{d y}{d s}+w \cdot \frac{d z}{d s}+\phi \cdot h
$$

$$
\Omega(s) \equiv \int h d s
$$

$$
\varepsilon_{x}=\frac{\mathrm{d} u}{\mathrm{~d} x}-\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}} \cdot y-\frac{\mathrm{d}^{2} w}{\mathrm{~d} x^{2}} \cdot z-\frac{\mathrm{d}^{2} \phi}{\mathrm{~d} x^{2}} \cdot \Omega
$$

Closed Cross-section

$$
\begin{gathered}
\gamma_{x s}=\frac{\tau_{x s}}{G} \\
\tau_{x s}=\frac{K}{t}
\end{gathered}
$$

$$
T=2 \cdot V=2 \cdot K \cdot A_{m}
$$

$$
\gamma_{x s}=\frac{\tau_{x s}}{G}=\frac{K}{G \cdot t}=\frac{T}{G \cdot t \cdot 2 \cdot A_{m}}=\frac{J}{2 \cdot t \cdot A_{m}} \cdot \phi^{\prime}
$$

Differential Equations

$$
\sigma_{x}=E \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}-E \cdot \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}} \cdot y-E \cdot \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}} \cdot z-E \cdot \frac{\mathrm{~d}^{2} \phi}{\mathrm{~d} x^{2}} \cdot \Omega
$$

$\left\{\begin{array}{c}N \\ M_{z} \\ -M_{y} \\ -B\end{array}\right\}=E \cdot\left[\begin{array}{cccc}\int_{A} d A & -\int_{A} y d A & -\int_{A} z d A & -\int_{A} \Omega d A \\ -\int_{A} y d A & \int_{A} y^{2} d A & \int_{A} y \cdot z d A & \int_{A} y \cdot \Omega d A \\ -\int_{A} z d A & \int_{A} y \cdot z d A & \int_{A} z^{2} d A & \int_{A} z \cdot \Omega d A \\ -\int_{A} \Omega d A & \int_{A} y \cdot \Omega d A & \int_{A} z \cdot \Omega d A & \int_{A} \Omega^{2} d A\end{array}\right]\left\{\begin{array}{c}\frac{d u}{d x} \\ \frac{d^{2} v}{d x^{2}} \\ \frac{d^{2} w}{d x^{2}} \\ \frac{d^{2} \phi}{d x^{2}}\end{array}\right\}$

$A=\int_{A} \mathrm{~d} A$	
$I_{z}=\int_{A} y^{2} d A$	
$I_{y}=\int_{A} z^{2} d A$	
$C_{\omega}=\int_{A} \Omega^{2} d A$	$N=E A \cdot \frac{d u}{d x}$
$M_{z}=E I_{z} \frac{d^{2} v}{d x^{2}}$	
M	$M_{y}=-E I_{y} \frac{d^{2} w}{d x^{2}}$
$B=-E C_{w} \frac{d^{2} \phi}{d x^{2}}$	

$$
\begin{aligned}
& q_{x}=-E A \cdot \frac{d^{2} u}{d x^{2}} \\
& q_{y}=E I_{z} \frac{d^{4} v}{d x^{4}} \\
& q_{z}=E I_{y} \frac{d^{4} w}{d x^{4}}
\end{aligned}
$$

Decoupling Conditions

$$
\int_{y}^{x} d A=\int_{i} d A=0
$$

$$
\int_{A} y \cdot z \mathrm{~d} A=0
$$

$$
\int_{A} \Omega \mathrm{~d} A=0
$$

$$
\int_{A} y \cdot \Omega \mathrm{~d} A=\int_{A} z \cdot \Omega \mathrm{~d} A=0
$$

Shear Flow \& Torque

$$
\begin{gathered}
d \sigma_{x} \cdot d s \cdot t+d \tau_{x s} \cdot d x \cdot t=0 \Rightarrow \frac{d \sigma_{x}}{d x} \cdot t+\frac{d \tau_{x s}}{d s} \cdot t=0 \Rightarrow \frac{d q_{s}}{d s}=-\frac{d \sigma_{x}}{d x} \cdot t \\
T=\int_{A} \tau_{x s} \cdot t \cdot h d A=\int_{A} q_{s} \cdot h d s=\int_{A} q_{s} d \Omega=\left[q_{s} \cdot \Omega\right]_{\Gamma}-\int_{A} \Omega d q_{s} \\
T=-\int_{A} \Omega d q_{s}=\int_{A} \Omega \cdot \frac{d \sigma_{x}}{d x} \cdot t d s=\int_{A} \Omega \cdot \frac{d \sigma_{x}}{d x} d A=\frac{d}{d x} \int_{A} \Omega \cdot \sigma_{x} d A=-\frac{d B}{d x} \\
T=G J \cdot \frac{d \phi}{d x}-E C_{w} \frac{d^{3} \phi}{d x^{3}}
\end{gathered}
$$

$$
m_{x}=E C_{w} \frac{d^{4} \phi}{d x^{4}}-G J \cdot \frac{d^{2} \phi}{d x^{2}}
$$

Cross-section Analysis

Omega diagram, Ω

Cross-section constant, C_{w}

Axial stress, σ

Shear stress, τ

More lectures:

Terje's Toobox:
terje.civil.ubc.ca

