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A short course on

Structural Members

This video: 
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Axial Stress Develops



Do they warp?
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Wide-flange Cross-section
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Saint Venant + Warping Torsion
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How is the torque carried?
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Bi-moment

B ≡ M ⋅h
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Unified Bending & Torsion

Load

Stress

Displacement

Strain

Equilibrium

Kinematic compatibility

Material law

Section integration

Stress resultant



Equilibrium
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Material Law
σ x = E ⋅ ε x

Section Integration
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Kinematic Compatibility
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Shear centre / centre of twist (ysc, zsc)

Centroid (0, 0)
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More Kinematics

 
γ xs =

d v
dx

+ du
ds

     ⇒      du = γ xs ⋅ds −
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Closed Cross-section
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Differential Equations
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Decoupling Conditions
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Shear Flow & Torque
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Cross-section Analysis

Omega diagram, W

Cross-section constant, Cw

Axial stress, s

Shear stress, t
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