A short course on

Probabilities and Random Variables

This video:
Discrete Stochastic Processes

Terje's Toolbox is freely available at terje.civil.ubc.ca

Bernoulli \& Poisson

Bernoulli Trials

$p=$ probability of "success" (the only model parameter)
$n=$ number of trials
$x=$ number of successes
$s=$ number of trials between each success

Binomial PMF: $\quad p(x)=\binom{n}{x} \cdot p^{x} \cdot(1-p)^{n-x}$

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n \cdot(n-1) \cdot(n-2) \cdots(n-k+1)}{k \cdot(k-1) \cdot(k-2) \cdots(1)}
$$

Geometric PMF: $\quad p(s)=p \cdot(1-p)^{s-1}$

Poisson Point Process

Model: Let there be a Bernoulli trial at every infinitesimal time instant
Assumptions: 1) Constant rate of occurrence
2) Each occurrence is independent of past events
3) Only one occurrence at any given time
$\lambda=$ rate of occurrence (the only model parameter)
$T=$ time period under consideration
$x=$ number of occurrences
$t=$ time between occurrences

Poisson PMF: $\quad p(x)=\frac{(\lambda \cdot T)^{x}}{x!} e^{-\lambda \cdot T}$
$x!$

$$
\text { Exponential PDF: } f(t)=\lambda \cdot e^{-\lambda \cdot t}
$$

Probability of "Occurrence"

$$
\begin{aligned}
& \mathrm{P}(\text { occurrence })=p(1)+p(2)+p(3)+\cdots \\
&=1-p(0) \\
&=1-e^{-\lambda \cdot T} \\
& \lambda=-\frac{\ln (1-\mathrm{P}(\text { occurrence }))}{T}
\end{aligned}
$$

Return Period

Common expression in media after storms

Mean time between occurrences: $R \equiv \mu_{t}$ (large variability)

Inverse of the rate: $\mu_{t}=1 / \lambda$

Return period for 2% chance of occurrence in 50 years:

$$
R=\frac{1}{\lambda}=-\frac{T}{\ln (1-\mathrm{P}(\text { occurrence }))}=-\frac{50}{\ln (1-0.02)}=2,475 \text { years }
$$

Rate $=$ Annual probability?

Return period, in years	Rate, i.e., mean annual frequency	Annual probability of occurrence
1	1	$1 / 1.582$
5	$1 / 5$	$1 / 5.517$
10	$1 / 10$	$1 / 10.508$
50	$1 / 50$	$1 / 50.502$
100	$1 / 100$	$1 / 100.501$
500	$1 / 500$	$1 / 500.500$
1,000	$1 / 1,000$	$1 / 1000.500$
10,00	$1 / 10,000$	$1 / 10,000.500$

Three ways to specify a Poisson process

Rate

Return period

Probability of occurrence in a time period

Derived Processes

Given two sources of earthquakes with λ_{1} and λ_{2}

Rate of occurrence of any earthquake: $\lambda_{1}+\lambda_{2}$

Given failure probability, p_{f}, associated with a hazard with rate λ

More lectures:

Terje's Toobox:
terje.civil.ubc.ca

