A short course on

Structural Members

This video:
St. Venant Torsion

Terje's Toolbox is freely available at terje.civil.ubc.ca
It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng.,

Two Types of Torsion

Ingredients

Notation


```
x = longitudinal axis
mx}=\mathrm{ distributed torque along the member
T = torque, resultant of shear stress
\phi = rotation about the x-axis
J cross-section constant for St. Venant torsion
G = shear modulus = E/(2(1+v))
\tau = shear stress
\gamma = shear strain
```


Equilibrium

$$
4 \frac{T}{d x} \rightarrow \xrightarrow{m_{x}} \xrightarrow{T+d T}
$$

$$
m_{x} d x-T+T+d T=0
$$

$$
\sum \quad m_{x}=-\frac{d T}{d x}
$$

Section Integration

$$
T=\int_{0}^{r_{0}}(2 \pi r) \cdot \tau \cdot r \cdot \mathrm{~d} r
$$

Material Law

$$
\begin{gathered}
\tau=G \cdot \gamma \\
G=\frac{E}{2(1+v)}
\end{gathered}
$$

Kinematic Compatibility

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} x}=\frac{\gamma}{r}
$$

Summary

$$
J=\int_{r_{i}}^{r_{0}} 2 \pi r^{3} \mathrm{~d} r=\frac{\pi}{2} \cdot\left(r_{o}^{4}-r_{i}^{4}\right)
$$

Prandtl's Stress Function

$$
\begin{array}{lll}
\tau_{x y}=\frac{\partial P}{\partial z}=P_{, z} & \sigma_{x x, x}+\tau_{y x, y}+\tau_{z x, z}=0 & \sigma_{x x, x}+\tau_{y x, y}+\tau_{z z, z}=0+P_{z y y}-P_{, y z}=0 \\
P(y, z) & \tau_{x y, x}+\sigma_{y y, y}+\tau_{z y, z}=0 & \tau_{x y, x}+\sigma_{y y, y}+\tau_{z y, z}=P_{z z x}+0+0=0 \\
\tau_{x z}=-\frac{\partial P}{\partial y}=-P_{, y} & \tau_{x z, x}+\tau_{y z, y}+\sigma_{z z, z}=0 & \tau_{x z, x}+\tau_{y z, y}+\sigma_{z z, z}=-P_{z z x}+0+0=0
\end{array}
$$

Boundary Conditions for Stress Function

$$
\tau_{x r}=0 \quad \tau_{x r}=\frac{\partial P(r, s)}{\partial s} \quad \frac{\partial P(r, s)}{\partial s}=0 \quad \tau_{x r}=\tau_{x z} \cdot \cos (\alpha)-\tau_{x y} \cdot \sin (\alpha)=-\left(\frac{\partial P}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial P}{\partial z} \frac{\partial z}{\partial s}\right)=\frac{\partial P}{\partial s}=0
$$

Membranes

Section Integration

$$
\begin{aligned}
& T=\int_{A}\left(\tau_{x z} \cdot y-\tau_{x y} \cdot z\right) \mathrm{d} A \\
& T=-\int_{A}\left(\frac{\partial P}{\partial y} \cdot y+\frac{\partial P}{\partial z} \cdot z\right) \mathrm{d} A \\
& T=-\left(\int_{A} \frac{\partial P}{\partial y} \cdot y \cdot \mathrm{~d} A\right)-\left(\int_{A} \frac{\partial P}{\partial z} \cdot z \cdot \mathrm{~d} A\right) \\
& =-\left(\oint P \cdot y \cdot \mathrm{~d} \Gamma-\int_{A} P \cdot \mathrm{~d} A\right)-\left(\oint P \cdot z \cdot \mathrm{~d} \Gamma-\int_{A} P \cdot \mathrm{~d} A\right) \\
& =-\underbrace{\oint P \cdot y \cdot \mathrm{~d} \Gamma}_{0}-\underbrace{\oint P \cdot z \cdot \mathrm{~d} \Gamma}_{0}+\int_{A} P \cdot \mathrm{~d} A+\int_{A} P \cdot \mathrm{~d} A \\
& =2 \cdot \int_{A} P \cdot \mathrm{~d} A
\end{aligned}
$$

Kinematic Compatibility

$$
\begin{aligned}
& v=-\phi \cdot z \\
& w=\phi \cdot y
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{x}=\frac{d u}{d x}=0 \\
& \varepsilon_{y}=\frac{d v}{d y}=0 \\
& \varepsilon_{z}=\frac{d w}{d z}=0
\end{aligned}
$$

$$
\gamma_{x y}=\frac{d v}{d x}+\frac{d u}{d y}=-\frac{d \phi}{d x} \cdot z+\frac{d u}{d y}
$$

$$
\gamma_{x z}=\frac{d u}{d z}+\frac{d w}{d x}=\frac{d u}{d z}+\frac{d \phi}{d x} \cdot y
$$

$$
\gamma_{y z}=\frac{d w}{d y}+\frac{d v}{d z}=0
$$

Summary

$$
\begin{aligned}
& P_{, z}=\tau_{x y}=G \cdot \gamma_{x y}=G \cdot\left(-\phi_{, x} \cdot z+u_{, y}\right) \\
& P_{, y}=-\tau_{x z}=-G \cdot \gamma_{x z}=-G \cdot\left(u_{, z}+\phi_{, x} \cdot y\right)
\end{aligned} \quad \square \quad \square \quad \frac{\partial^{2} P(y, z)}{\partial y^{2}}+\frac{\partial^{2} P(y, z)}{\partial z^{2}} \equiv P_{, y y}+P_{, z z} \equiv \nabla^{2} P(y, z)=-2 \cdot G \cdot \phi^{\prime}
$$

Cross-section Analysis

Cross-section constant, J

Shear stress $\tau_{x y}$ and $\tau_{x z}$

More lectures:

Terje's Toobox:
terje.civil.ubc.ca

