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A short course on

Structural Members

This video: 
St. Venant Torsion



Two Types of Torsion

T, f

φT, f



Ingredients

Load

Stress

Displacement

Strain

Equilibrium

Kinematic compatibility

Material law

Section integration

Stress resultant



Notation

x  =  longitudinal axis

mx =  distributed torque along the member
T  =  torque, resultant of shear stress

f  = rotation about the x-axis
J  =  cross-section constant for St. Venant torsion
G  =  shear modulus = E/(2(1+n))

t  =  shear stress
g  =  shear strain

mx T, f x



Equilibrium

mx = −
dT
dx

mx T + dT

dx
T

mx.dx – T + T + dT = 0



Section Integration

T = (2πr) ⋅τ ⋅ r ⋅dr
ri

ro
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Material Law

𝜏 = 𝐺 $ 𝛾
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Kinematic Compatibility
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γ
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Summary

γτ

ϕmx

T dφ
dx

= γ
r

τ = G ⋅γ

T = (2πr) ⋅τ ⋅r ⋅dr
ri

ro

∫

mx = −GJ ⋅ d
2φ
dx2

mx = − dT
dx T = GJ ⋅ dφ
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Prandtl’s Stress Function

τ xy =
∂P
∂z

= P,z

τ xz = − ∂P
∂y

= −P,y

σ xx,x +τ yx,y +τ zx,z = 0
τ xy,x +σ yy,y +τ zy,z = 0
τ xz,x +τ yz,y +σ zz,z = 0

σ xx,x +τ yx,y +τ zx,z = 0 + P,zy − P,yz = 0
τ xy,x +σ yy,y +τ zy,z = P,zx + 0 + 0 = 0
τ xz,x +τ yz,y +σ zz,z = −P,zx + 0 + 0 = 0

P(y, z)

z, w

y, v

x, u

f

txy

txz



Boundary Conditions for Stress Function
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ds

τ xr = 0 τ xr =
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∂s
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∂s
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Membranes



Section Integration

T = τ xz ⋅ y − τ xy ⋅ z( )dA
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Kinematic Compatibility

v = −φ ⋅ z
w = φ ⋅ y

ε x =
du
dx

= 0

ε y =
dv
dy

= 0

ε z =
dw
dz

= 0

γ xy =
dv
dx

+ du
dy

= − dφ
dx

⋅ z + du
dy

γ xz =
du
dz

+ dw
dx

= du
dz

+ dφ
dx

⋅ y

γ yz =
dw
dy

+ dv
dz

= 0



Summary

γ xy = −φ,x ⋅ z + u,y
γ xz = u,z +φ,x ⋅ y

τ xy = G ⋅γ xy

τ xz = G ⋅γ xz

P,yy + P,zz = −2 ⋅G ⋅ ′φ

T = 2 ⋅ ϕ ⋅dA
A
∫

T = GJ ⋅ dφ
dx

P
γ xy

γ xz
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txy = P,z
txz = –P,y

P

mx = −GJ ⋅ d
2φ
dx2

P,z = τ xy = G ⋅γ xy = G ⋅ −φ,x ⋅ z + u,y( )
P,y = −τ xz = −G ⋅γ xz = −G ⋅ u,z +φ,x ⋅ y( )

∂2P(y, z)
∂y2

+ ∂2P(y, z)
∂z2

≡ P,yy + P,zz ≡ ∇2P(y, z) = −2 ⋅G ⋅ ′φ



Cross-section Analysis

2 ⋅ P ⋅dA
A
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J = − 4 ⋅V
∇2P
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Cross-section constant, J

Shear stress txy and txz

T = GJ ⋅ dφ
dx
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