A short course on

Indeterminate Structures

This video:
Flexibility Method

Terje's Toolbox is freely available at terje.civil.ubc.ca
It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng.,

Overview of Methods

Truss and frame structures

Interplay of Methods

Equilibrium to find BMD and sometimes AFD for statically determinate structure

Virtual work to determine deformations

Flexibility method to determine BMD, SFD, and AFD

DSI \& Redundants

Example

$\frac{\exists \downarrow \downarrow}{\mathrm{B}}$

Selected redundant, $X_{B}\lceil$ defines the positive direction for all $\Delta \mathrm{s}$

Compatibility: $\quad \Delta_{B 0}+\Delta_{B B} \cdot X_{B}=0$

Compatibility Equation

$\Delta_{B 0}$

$$
\Delta_{B 0}+\Delta_{B B} \cdot X_{B}=0
$$

$$
X_{B}=-\frac{\Delta_{B 0}}{\Delta_{B B}}
$$

Virtual Work

Displacements

$$
\Delta_{B 0}=\int_{0}^{L} M_{B} \cdot \frac{M_{0}}{E I} d x=-\frac{1}{4 E I} \cdot \frac{q L^{2}}{2} \cdot L \cdot L=-\frac{q L^{4}}{8 E I}
$$

$M_{B}=L \square$

$$
\Delta_{B B}=\int_{0}^{L} M_{B} \cdot \frac{M_{B}}{E I} d x=\frac{1}{3 E I} \cdot L \cdot L \cdot L=\frac{L^{3}}{3 E I}
$$

Result

$$
\begin{aligned}
& \frac{\forall \downarrow \downarrow}{\text { (} \mathrm{A} \text { B }} \\
& X_{B}=-\frac{\Delta_{B 0}}{\Delta_{B B}}=-\frac{-\frac{q L^{4}}{8 E I}}{\frac{L^{3}}{3 E I}}=\frac{3 q L}{8}
\end{aligned}
$$

Example

$$
\begin{gathered}
M=M_{0}+M_{B} \cdot X_{B} \\
V=V_{0}+V_{B} \cdot X_{B}
\end{gathered}
$$

Rotation

$$
\theta_{A 0}+\theta_{A A} \cdot X_{A}=0
$$

$$
M=M_{0}+M_{A} \cdot X_{A}
$$

$$
\mathrm{V}=V_{0}+V_{A} \cdot X_{A}
$$

\square

DSI > 1

$$
\begin{aligned}
& \Delta_{A 0}+\Delta_{A A} \cdot x_{A}+\Delta_{A B} \cdot x_{B}=0 \\
& \Delta_{B 0}+\Delta_{B A} \cdot x_{A}+\Delta_{B B} \cdot x_{B}=0
\end{aligned}
$$

$$
\mathbf{d}+\mathbf{f} \mathbf{x}=\mathbf{0}
$$

$$
\begin{aligned}
M & =M_{0}+M_{A} \cdot x_{A}+M_{B} \cdot x_{B} \\
V & =V_{0}+V_{A} \cdot x_{A}+V_{B} \cdot x_{B} \\
N & =N_{0}+N_{A} \cdot x_{A}+N_{B} \cdot x_{B}
\end{aligned}
$$

Procedure

1. Determine the degree of static indeterminacy, DSI
2. Make the structure statically determinate by introducing DSI number of releases
3. Draw BMDs for the determinate structure, for the acting load and for unit forces along the redundants
4. Establish compatibility equations to avoid "gaps" at the releases
5. Determine the deformations in the compatibility equations by virtual work
6. Solve the compatibility equations for the redundant forces
7. Draw the final BMD by summing the BMDs from Step 3 multiplied by redundant force values

Virtual Work

$$
\left(\begin{array}{l}
\delta F \cdot \Delta \\
+\delta F_{S 1} \cdot \Delta_{S 1} \\
+\delta F_{S 2} \cdot \Delta_{S 2} \\
+\cdots
\end{array}\right)=\sum_{\substack{\text { Sun over } \\
\text { all members }}}\left(\begin{array}{l}
\delta N \cdot\left(\frac{N \cdot L}{E A}+\alpha \cdot \Delta T \cdot L+\Delta L_{\text {fab. error }}\right) \\
+\int_{0}^{L} \delta M \cdot\left(\frac{M}{E I} \pm \alpha \cdot \frac{\left|\Delta T_{\text {top }}-\Delta T_{\text {bottom }}\right|}{h}\right) d x \\
+\int_{0}^{L} \frac{\delta V \cdot V}{G \cdot A_{v}} \mathrm{~d} x
\end{array}\right)
$$

Settlements

Always on the left-hand side of $\Delta_{i 0}+\Delta_{i i} \cdot X_{i}=0$ except...

Settlements \& Temperature Change

$$
\begin{aligned}
& M=\left.\right|_{0}+M_{B} \cdot X_{B} \\
& V=\psi_{0}+V_{B} \cdot X_{B} \\
& N=\left.\right|_{0}+N_{B} \cdot X_{B}
\end{aligned}
$$

$$
\left(\begin{array}{l}
\delta F \cdot \Delta \\
+\delta F_{S 1} \cdot \Delta_{S 1} \\
+\delta F_{S 2} \cdot \Delta_{S 2} \\
+\cdots
\end{array}\right)=\sum_{\substack{\text { Sun over } \\
\text { all members }}}\left(\begin{array}{l}
\delta N \cdot\left(\frac{N \cdot L}{E A}+\alpha \cdot \Delta T \cdot L+\Delta L_{\text {fab. error }}\right) \\
+\int_{0}^{L} \delta M \cdot\left(\frac{M}{E I} \pm \alpha \cdot \frac{\left|\Delta T_{\text {top }}-\Delta T_{\text {bottom }}\right|}{h}\right) d x \\
+\int_{0}^{L} \frac{\delta V \cdot V}{G \cdot A_{v}} \mathrm{~d} x
\end{array}\right)
$$

Always DSI Redundants?

More lectures:

Terje's Toobox:
terje.civil.ubc.ca

