A short course on

Indeterminate Structures

This video: Flexibility Method

Terje's Toolbox is freely available at <u>terje.civil.ubc.ca</u> It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng., Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Overview of Methods

Interplay of Methods

Equilibrium to find BMD and sometimes AFD for statically determinate structure

Virtual work to determine deformations

Flexibility method to determine BMD, SFD, and AFD

DSI & Redundants

Compatibility: $\Delta_{B0} + \Delta_{BB} \cdot X_B = 0$

Compatibility Equation

 $\Delta_{B0} + \Delta_{BB} \cdot X_B = 0$

$$X_B = -\frac{\Delta_{B0}}{\Delta_{BB}}$$

Virtual Work

Displacements

Result

$$M = M_0 + M_B \cdot X_B$$
$$V = V_0 + V_B \cdot X_B$$

Rotation

DSI > 1

$$\Delta_{A0} + \Delta_{AA} \cdot x_A + \Delta_{AB} \cdot x_B = 0$$

$$\Delta_{B0} + \Delta_{BA} \cdot x_A + \Delta_{BB} \cdot x_B = 0$$

 $\mathbf{d} + \mathbf{f}\mathbf{x} = \mathbf{0}$

$$M = M_0 + M_A \cdot x_A + M_B \cdot x_B$$
$$V = V_0 + V_A \cdot x_A + V_B \cdot x_B$$
$$N = N_0 + N_A \cdot x_A + N_B \cdot x_B$$

Procedure

- 1. Determine the degree of static indeterminacy, DSI
- 2. Make the structure statically determinate by introducing DSI number of releases
- 3. Draw BMDs for the determinate structure, for the acting load and for unit forces along the redundants
- 4. Establish compatibility equations to avoid "gaps" at the releases
- 5. Determine the deformations in the compatibility equations by virtual work
- 6. Solve the compatibility equations for the redundant forces
- 7. Draw the final BMD by summing the BMDs from Step 3 multiplied by redundant force values

Virtual Work

$$\begin{pmatrix} \delta F \cdot \Delta \\ + \delta F_{S1} \cdot \Delta_{S1} \\ + \delta F_{S2} \cdot \Delta_{S2} \\ + \cdots \end{pmatrix} = \sum_{\substack{\text{Sum over} \\ \text{all members}}} \int_{0}^{L} \delta M \cdot \left(\frac{M}{EI} \pm \alpha \cdot \frac{\left| \Delta T_{top} - \Delta T_{bottom} \right|}{h} \right) dx \\ + \int_{0}^{L} \delta V \cdot V \\ + \int_{0}^{L} \frac{\delta V \cdot V}{G \cdot A_{v}} dx$$

Settlements

Always on the left-hand side of $\Delta_{i0} + \Delta_{ii} \cdot X_i = 0$ except...

Settlements & Temperature Change

$$M = M_0 + M_B \cdot X_B$$

$$V = V_0 + V_B \cdot X_B$$

$$\begin{pmatrix} \delta F \cdot \Delta \\ + \delta F_{S1} \cdot \Delta_{S1} \\ + \delta F_{S2} \cdot \Delta_{S2} \\ + \cdots \end{pmatrix} = \sum_{\substack{\text{Sum over} \\ \text{all members}}} \left\{ \begin{cases} \delta N \cdot \left(\frac{N \cdot L}{EA} + \alpha \cdot \Delta T \cdot L + \Delta L_{\text{fab. error}} \right) \\ + \int_0^L \delta M \cdot \left(\frac{M}{EI} \pm \alpha \cdot \frac{\left| \Delta T_{top} - \Delta T_{bottom} \right|}{h} \right) dx \\ + \int_0^L \frac{\delta V \cdot V}{G \cdot A_v} dx \end{cases} \right\}$$

Always DSI Redundants?

More lectures:

Terje's Toobox:

terje.civil.ubc.ca