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A short course on

Structural Members

This video: 
Euler-Bernoulli Beams



Beam Theory

Galileo's Problem

Fig. 1.3. Galileo's cantilever beam.

a uniform distribution of limiting stress GQ at fracture, as indicated in
fig. 1.5. Thus, for the rectangular section, the value of S is bddo, and the
section modulus implicit in the right-hand side of equation (1.1) is \bd2.

As is evident, figs 1.4 and 1.5 (which, it must be repeated, were not
drawn by Galileo) are incomplete free-body diagrams - the reactions at
the fulcrum B are not shown. Seventeenth and eighteenth century work
was concerned to 'correct' Galileo's analysis in this respect; the form of
equation (1.1) is unchanged, but the factor of \ was determined to have
other values by different writers. Galileo himself, however, does not make
use of the numerical value of absolute strength S; he is concerned with
calculations of relative strengths, and the quantity ^S could be looked on
as a given physical parameter entering the analysis. For example, Galileo
shows easily and correctly that the ratio of loads T to X required to
break a rectangular-section cantilever beam when it is on edge and when
it is flat is simply the ratio ca/cb, fig. 1.6; since the section modulus has
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Ingredients

Load

Stress

Displacement

Strain

Equilibrium

Kinematic compatibility

Material law

Section integration

Stress resultant



Notation

x  =  longitudinal direction

z  =  vertical direction; direction of loading and displacement
y  =  horizontal direction perpendicular to the member

qz  =  distributed load in the z-direction
V  =  shear force, resultant of shear stress
M =  axial force, resultant of axial stress

Iy  =  moment of inertia about the y-axis
E  =  modulus of elasticity

s  =  axial stress
e  =  axial strain

u  = displacement in the x-direction
w  = displacement in the z-direction

z, w

x, u

qz

EIy
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Anomaly

εσ

qz w

M



Equilibrium

qz =
dV
dx

V = dM
dx

dx

qz

VM M+dMV+dV

SFy = V – V – dV + qz.dx = 0

SMA = V.dx + M – M – dM + qz.dx.(dx/2) = 0

A



Section Integration

M = −σ ⋅ z dA
A
∫

• Positive tension stress
• Negative z-values

x

z • Negative compression stress
• Positive z-values

Minus sign in cross-section 
integral is necessary to get 
positive bending moment

MM



Material Law

σ = E ⋅ ε

ε yy =
σ yy

E
−ν ⋅σ xx

E
= 0        ⇒         σ yy = ν ⋅σ xx

ε xx =
σ xx

E
−ν

σ yy

E
= σ xx

E
−ν

ν ⋅σ xx( )
E

= σ xx

E
(1−ν 2 )     ⇒      σ xx =

E
1−ν 2 ⋅ε xx



Kinematic Compatibility

z

dθ

x, u

z, wdu = −dθ ⋅ z

tan(θ) = dw
dx
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dx
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Summary

εσ

qz

ε = − d
2w
dx2

⋅ z

σ = E ⋅ε

M = −σ ⋅ z dA
A
∫

qz = −EIy
d 4w
dx4

qz =
dV
dx

V = dM
dx

w

M

qz = 

Iy = z2   dA
A
∫

qz =
d 4w
dx4 E ⋅ z2  dA

A
∫



General Solution

w(x) = 1
24

⋅
qz
EIy

⋅ x4 +C1 ⋅ x
3 +C2 ⋅ x

2 +C3 ⋅ x +C4

θ =
dw
dx

M = EIy
d 2w
dx2

V = EIy
d 3w
dx3

qz = −EIy
d 4w
dx4

qz = 



Cross-section Analysis

Moment of inertia

Axial stress

Shear stress
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