A short course on

Structural Members

This video:
Euler-Bernoulli Beams

Terje's Toolbox is freely available at terje.civil.ubc.ca
It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng.,
Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Beam Theory

Augustin Cauchy (1822)

Edme Mariotte (1676)

Ingredients

Notation

$x=$ longitudinal direction
$z=$ vertical direction; direction of loading and displacement
$y=$ horizontal direction perpendicular to the member
$q_{z}=$ distributed load in the z-direction
$V=$ shear force, resultant of shear stress
$M=$ axial force, resultant of axial stress
$I_{y}=$ moment of inertia about the y-axis
$E=$ modulus of elasticity
$\sigma=$ axial stress
$\varepsilon=$ axial strain

$u=$ displacement in the x-direction
$w=$ displacement in the z-direction

Anomaly

Equilibrium

$$
\Sigma F_{y}=V-V-d V+q_{z} \cdot d x=0
$$

$$
\square q_{z}=\frac{d V}{d x}
$$

$$
\Sigma M_{A}=V \cdot d x+M-M-d M+q_{z} d x \cdot(d x / 2)=0
$$

$$
\square V=\frac{d M}{d x}
$$

Section Integration

$$
M=\int_{A}-\sigma \cdot z \mathrm{~d} A
$$

Minus sign in cross-section integral is necessary to get positive bending moment

Material Law

$$
\sigma=E \cdot \varepsilon
$$

$$
\varepsilon_{y y}=\frac{\sigma_{y y}}{E}-v \cdot \frac{\sigma_{x x}}{E}=0 \quad \Rightarrow \quad \sigma_{y y}=v \cdot \sigma_{x x}
$$

$$
\varepsilon_{x x}=\frac{\sigma_{x x}}{E}-v \frac{\sigma_{x y}}{E}=\frac{\sigma_{x x}}{E}-v \frac{\left(v \cdot \sigma_{x x}\right)}{E}=\frac{\sigma_{x x}}{E}\left(1-v^{2}\right) \quad \Rightarrow \quad \sigma_{x x}=\frac{E}{1-v^{2}} \cdot \varepsilon_{x x}
$$

$$
\varepsilon=\frac{d u}{d x}
$$

Kinematic Compatibility

$$
d u=-\mathrm{d} \theta \cdot z
$$

$$
\tan (\theta)=\frac{d w}{d x} \approx \theta
$$

$$
\varepsilon=\frac{d u}{d x}=-\frac{d \theta}{d x} \cdot z=-\frac{d^{2} w}{d x^{2}} \cdot z
$$

$\kappa \equiv \frac{1}{R} \quad \kappa \approx \frac{d \theta}{d x} \approx \frac{d^{2} w}{d x^{2}}$

$$
\theta=\tan ^{-1}\left(\frac{d w}{d x}\right) \quad \kappa \approx \frac{d \theta}{d x}=\frac{\left(\frac{d^{2} w}{d x^{2}}\right)}{\left(1+\left(\frac{d w}{d x}\right)^{2}\right)} \quad \kappa=\frac{\left(\frac{d^{2} w}{d x^{2}}\right)}{\left(1+\left(\frac{d w}{d x}\right)^{2}\right)^{\frac{3}{2}}}
$$

Summary

$$
q_{z}=\frac{d^{4} w}{d x^{4}} \int_{A} E \cdot z^{2} \mathrm{~d} A
$$

General Solution

$$
q_{z}=E I_{y} \frac{d^{4} w}{d x^{4}} \longrightarrow \quad w(x)=\frac{1}{24} \cdot \frac{q_{z}}{E I_{y}} \cdot x^{4}+C_{1} \cdot x^{3}+C_{2} \cdot x^{2}+C_{3} \cdot x+C_{4}
$$

$$
\begin{gathered}
\theta=\frac{d w}{d x} \\
M=E I_{y} \frac{d^{2} w}{d x^{2}} \\
V=E I_{y} \frac{d^{3} w}{d x^{3}}
\end{gathered}
$$

Cross-section Analysis

Moment of inertia

Axial stress

Shear stress

More lectures:

Terje's Toobox:
terje.civil.ubc.ca

