A short course on

Indeterminate Structures

This video:
Virtual Work

Terje's Toolbox is freely available at terje.civil.ubc.ca
It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng.,
Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Overview of Methods

Truss and frame structures

Why Deformations?

Serviceability limit-states

$$
\Delta<L / 300
$$

Analysis of indeterminate structures with the flexibility method

Deformations influence internal forces

Real Work

$$
\begin{array}{ll}
W=F \cdot \Delta & W=M \cdot \theta \\
W=\int_{0}^{\Delta} F \mathrm{~d} \Delta & W=\int_{0}^{\kappa} M \mathrm{~d} \theta \\
W=\frac{1}{2} \cdot F \cdot \Delta & W=\frac{1}{2} \cdot M \cdot \theta
\end{array}
$$

Internal Work

$$
\begin{aligned}
U & =\int_{V} \frac{1}{2} \cdot \sigma \cdot \varepsilon \cdot \mathrm{~d} V=\int_{V} \frac{1}{2} \cdot\left(\frac{N}{A}\right) \cdot\left(\frac{\sigma}{E}\right) \cdot \mathrm{d} V=\int_{V} \frac{1}{2} \cdot\left(\frac{N}{A}\right) \cdot\left(\frac{N}{E A}\right) \cdot \mathrm{d} V \\
& =\int_{0}^{L} \frac{1}{2} \cdot N \cdot\left(\frac{N}{E A}\right) \cdot \mathrm{d} x=\frac{1}{2} \cdot \underbrace{N}_{\text {Force }} \cdot \underbrace{\left(\frac{N}{E A}\right) \cdot L}_{\text {Elongation }} \\
U & =\int_{V} \frac{1}{2} \cdot \sigma \cdot \varepsilon \mathrm{~d} V=\int_{V} \frac{1}{2} \cdot\left(\frac{M}{I} \cdot z\right) \cdot\left(\frac{\sigma}{E}\right) \mathrm{d} V \\
& =\int_{V}^{1} \frac{1}{2} \cdot\left(\frac{M}{I} \cdot z\right) \cdot\left(\frac{M}{E I} \cdot z\right) \mathrm{d} V=\int_{0}^{L} \frac{1}{2} \cdot \underbrace{M}_{\text {Moment }} \cdot \underbrace{E I}_{\text {Curvature }}) d x
\end{aligned}
$$

Experiment

Virtual Work

External:

$$
\delta F \cdot \Delta=\int_{0}^{L} \delta M \cdot \kappa d x=\int_{0}^{L} \delta M \cdot \frac{M}{E I} d x
$$

Internal:

Result

$$
\delta F \cdot \Delta=\sum_{\substack{\text { Sum over } \\ \text { all members }}}\left(\frac{\delta N \cdot N \cdot L}{E A}+\int_{0}^{L} \frac{\delta M \cdot M}{E I} \mathrm{~d} x+\int_{0}^{L} \frac{\delta V \cdot V}{G \cdot A_{v}} \mathrm{~d} x\right)
$$

1.0 * Real displacement $=\sum$ Virtual internal forces * Real internal deformations

$$
\delta M \cdot \theta=\sum_{\substack{\text { Sum never } \\ \text { all nembers }}}\left(\frac{\delta N \cdot N \cdot L}{E A}+\int_{0}^{L} \frac{\delta M \cdot M}{E I} \mathrm{~d} x+\int_{0}^{L} \frac{\delta V \cdot V}{G \cdot A_{v}} \mathrm{~d} x\right)
$$

Procedure

猪 $\downarrow \downarrow \downarrow$

$$
\delta F \cdot \Delta=\int_{0}^{L} \frac{\delta M \cdot M}{E I} \mathrm{~d} x
$$

Quick Integration

$\int_{0}^{L} \frac{\delta M \cdot M}{E I} \mathrm{~d} x$	M_{1}	\xrightarrow{M}	$M_{1} \quad$	$\xrightarrow{\text { M }}$
M_{3}	$\frac{1}{E I} M_{1} M_{3} L$	$\frac{1}{2 E I} M_{1} M_{3} L$	$\frac{1}{2 E I}\left(M_{1}+M_{2}\right) M_{3} L$	$\frac{1}{2 E I} M_{1} M_{3} L$
\xrightarrow{M}	$\frac{1}{2 E I} M_{1} M_{3} L$	$\frac{1}{3 E I} M_{1} M_{3} L$	$\frac{1}{6 E I}\left(M_{1}+2 M_{2}\right) M_{3} L$	$\frac{1}{4 E I} M_{1} M_{3} L$
M_{3}	$\frac{1}{2 E I} M_{1} M_{3} L$	$\frac{1}{6 E I} M_{1} M_{3} L$	$\frac{1}{6 E I}\left(2 M_{1}+M_{2}\right) M_{3} L$	$\frac{1}{4 E I} M_{1} M_{3} L$
M_{3}	$\frac{1}{2 E I} M_{1}\left(M_{3}+M_{4}\right) L$	$\frac{1}{6 E I} M_{1}\left(M_{3}+2 M_{4}\right) L$	$\begin{aligned} & \frac{1}{6 E I} M_{1}\left(2 M_{3}+M_{4}\right) L \\ & +\frac{1}{6 E I} M_{2}\left(M_{3}+2 M_{4}\right) L \end{aligned}$	$\frac{1}{4 E I}\left(M_{1} M_{3}+M_{1} M_{4}\right) L$
	$\frac{1}{2 E I} M_{1} M_{3} L$	$\frac{1}{4 E I} M_{1} M_{3} L$	$\frac{1}{4 E I}\left(M_{1} M_{3}+M_{2} M_{3}\right) L$	$\frac{1}{3 E I} M_{1} M_{3} L$
	$\frac{2}{3 E I} M_{1} M_{3} L$	$\frac{1}{3 E I} M_{1} M_{3} L$	$\frac{1}{3 E I}\left(M_{1}+M_{2}\right) M_{3} L$	$\frac{5}{12 E I} M_{1} M_{3} L$
	$\frac{1}{3 E I} M_{1} M_{3} L$	$\frac{1}{4 E I} M_{1} M_{3} L$	$\frac{1}{12 E I}\left(M_{1}+3 M_{2}\right) M_{3} L$	$\frac{7}{48 E I} M_{1} M_{3} L$
	$\frac{2}{3 E I} M_{1} M_{3} L$	$\frac{5}{12 E I} M_{1} M_{3} L$	$\frac{1}{12 E I}\left(3 M_{1}+5 M_{2}\right) M_{3} L$	

Example

$\frac{\text { 猪 } \downarrow \downarrow}{L, E I}$

$$
1 \cdot \Delta=\int_{0}^{L} \delta M \cdot \frac{M}{E I} d x=\frac{1}{4 E I} \cdot \frac{q L^{2}}{2} \cdot L \cdot L=\frac{q L^{4}}{8 E I}
$$

Example

$\frac{\text { 毣 } \downarrow \downarrow}{L, E I}$

M_{3}

$\delta M=1 \square$

$$
1 \cdot \theta=\int_{0}^{L} \delta M \cdot \frac{M}{E I} d x=\frac{1}{3 E I} \cdot \frac{q L^{2}}{2} \cdot 1 \cdot L=\frac{q L^{3}}{6 E I}
$$

Basic Shapes

$\frac{\text { 部 } \downarrow \downarrow}{L, E I}$

Quick Integration

$\int_{0}^{L} \frac{\delta M \cdot M}{E I} \mathrm{~d} x$	M_{1}	\xrightarrow{M}	M_{1}	$\xrightarrow{\text { M }}$
M_{3}	$\frac{1}{E I} M_{1} M_{3} L$	$\frac{1}{2 E I} M_{1} M_{3} L$	$\frac{1}{2 E I}\left(M_{1}+M_{2}\right) M_{3} L$	$\frac{1}{2 E I} M_{1} M_{3} L$
$\longrightarrow M_{3}$	$\frac{1}{2 E I} M_{1} M_{3} L$	$\frac{1}{3 E I} M_{1} M_{3} L$	$\frac{1}{6 E I}\left(M_{1}+2 M_{2}\right) M_{3} L$	$\frac{1}{4 E I} M_{1} M_{3} L$
M_{3}	$\frac{1}{2 E I} M_{1} M_{3} L$	$\frac{1}{6 E I} M_{1} M_{3} L$	$\frac{1}{6 E I}\left(2 M_{1}+M_{2}\right) M_{3} L$	$\frac{1}{4 E I} M_{1} M_{3} L$
M_{3}	$\frac{1}{2 E I} M_{1}\left(M_{3}+M_{4}\right) L$	$\frac{1}{6 E I} M_{1}\left(M_{3}+2 M_{4}\right) L$	$\begin{aligned} & \frac{1}{6 E I} M_{1}\left(2 M_{3}+M_{4}\right) L \\ & +\frac{1}{6 E I} M_{2}\left(M_{3}+2 M_{4}\right) L \end{aligned}$	$\frac{1}{4 E I}\left(M_{1} M_{3}+M_{1} M_{4}\right) L$
	$\frac{1}{2 E I} M_{1} M_{3} L$	$\frac{1}{4 E I} M_{1} M_{3} L$	$\frac{1}{4 E I}\left(M_{1} M_{3}+M_{2} M_{3}\right) L$	$\frac{1}{3 E I} M_{1} M_{3} L$
	$\frac{2}{3 E I} M_{1} M_{3} L$	$\frac{1}{3 E I} M_{1} M_{3} L$	$\frac{1}{3 E I}\left(M_{1}+M_{2}\right) M_{3} L$	$\frac{5}{12 E I} M_{1} M_{3} L$
	$\frac{1}{3 E I} M_{1} M_{3} L$	$\frac{1}{4 E I} M_{1} M_{3} L$	$\frac{1}{12 E I}\left(M_{1}+3 M_{2}\right) M_{3} L$	$\frac{7}{48 E I} M_{1} M_{3} L$
	$\frac{2}{3 E I} M_{1} M_{3} L$	$\frac{5}{12 E I} M_{1} M_{3} L$	$\frac{1}{12 E I}\left(3 M_{1}+5 M_{2}\right) M_{3} L$	

Same Result

$1 \cdot \Delta=\frac{1}{3 E I} \cdot \frac{q L^{2}}{2} \cdot L \cdot L-\frac{1}{3 E I} \cdot \frac{q L^{2}}{8} \cdot L \cdot L=\frac{q L^{4}}{8 E I}$

Axial \& Shear Deformations?

$$
\delta F \cdot \Delta=\sum_{\substack{\text { Sum over } \\ \text { all members }}}\left(\frac{\delta N \cdot N \cdot L}{E A}+\int_{0}^{L} \frac{\delta M \cdot M}{E I} \mathrm{~d} x+\int_{0}^{L} \frac{\delta V \cdot V}{G \cdot A_{v}} \mathrm{~d} x\right)
$$

Settlements, Temperature Change

$$
\left(\begin{array}{l}
\delta F \cdot \Delta \\
+\delta F_{S 1} \cdot \Delta_{S 1} \\
+\delta F_{S 2} \cdot \Delta_{S 2} \\
+\cdots
\end{array}\right)=\sum_{\substack{\text { Sun over } \\
\text { all members }}}\left(\begin{array}{l}
\delta N \cdot\left(\frac{N \cdot L}{E A}+\alpha \cdot \Delta T \cdot L+\Delta L_{\text {fab. error }}\right) \\
+\int_{0}^{L} \delta M \cdot\left(\frac{M}{E I} \pm \alpha \cdot \frac{\left|\Delta T_{\text {top }}-\Delta T_{\text {bottom }}\right|}{h}\right) d x \\
+\int_{0}^{L} \frac{\delta V \cdot V}{G \cdot A_{v}} \mathrm{~d} x
\end{array}\right)
$$

Signs

Negative when virtual force is tension with
real shortening, and when virtual force is
compression with real elongation

Negative when
shear forces have
opposite sign

More lectures:

Terje's Toobox:
terje.civil.ubc.ca

