The Finite Element Method

This video:
The Finite Element Method for Truss and Beam Elements

Terje's Toolbox is freely available at terje.civil.ubc.ca
It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng.,
Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Elements

Boundary Value Problems

Forms of the BVP

Weighted residual form

Weak form (virtual work)

Variational form (energy)

Truss Member

Forms of the Truss BVP

$$
\frac{d u}{d x} \equiv u^{\prime}
$$

Strong form (differential equation):

$$
E A \cdot u^{\prime \prime}+q_{x}=0
$$

Weighted residual form:

$$
\int_{0}^{L}\left(E A \cdot u^{\prime \prime}+q_{x}\right) \cdot \delta u d x=0
$$

Weak form (virtual work):

$$
\int_{0}^{L}\left(-E A \cdot u^{\prime} \cdot \delta u^{\prime}+q_{x} \cdot \delta u\right) d x=0
$$

Variational form (energy):

$$
\int_{0}^{L}\left(-\frac{1}{2} \cdot E A \cdot\left(u^{\prime}\right)^{2}+q_{x} \cdot u\right) d x=0
$$

Weak Form = Virtual Work

Virtual work:

$$
\delta W_{\mathrm{int}}=\delta W_{\mathrm{ext}}
$$

Principle of virtual displacements:

$$
\int_{V} \sigma \cdot \delta \varepsilon d V=\int_{0}^{L} q_{x} \cdot \delta u d x
$$

$\sigma=E \cdot \varepsilon$ Substitute material law:

$$
\int_{V} E \cdot \varepsilon \cdot \delta \varepsilon d V=\int_{0}^{L} q_{x} \cdot \delta u d x
$$

$\varepsilon=\frac{d u}{d x}$ Substitute kinematic compatibility:

$$
\int_{V} E \cdot u^{\prime} \cdot \delta u^{\prime} d V=\int_{0}^{L} E A \cdot u^{\prime} \cdot \delta u^{\prime} d x=\int_{0}^{L} q_{x} \cdot \delta u d x
$$

Weak form from previous slide:

$$
\int_{0}^{L}\left(-E A \cdot u^{\prime} \cdot \delta u^{\prime}+q_{x} \cdot \delta u\right) d x=0
$$

Discretization

$N_{1}(x)=1-\frac{x}{L}$
${ }^{N_{2}} N_{2}(x)=\frac{x}{L}$

$$
\underbrace{\left(\int_{0}^{L} E A \cdot \mathbf{N}^{{ }^{T}} \mathbf{N}^{\prime} d x\right)}_{\mathbf{K}} \mathbf{u}=\underbrace{\int_{0}^{L} q_{x} \mathbf{N}^{T} d x}_{\mathbf{F}} \quad \square \quad\left[\begin{array}{cc}
\frac{E A}{L} & -\frac{E A}{L} \\
-\frac{E A}{L} & \frac{E A}{L}
\end{array}\right]\left\{\begin{array}{c}
u_{1} \\
u_{2}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{q_{x} L}{2} \\
\frac{q_{x} L}{2}
\end{array}\right\}
$$

$$
\begin{aligned}
& \int_{0}^{L}\left(-E A \cdot u^{\prime} \cdot \delta u^{\prime}+q_{x} \cdot \delta u\right) d x=0 \\
& u(x)=\mathbf{N u}=\left[\begin{array}{ll}
N_{1}(x) & N_{2}(x)
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\} \\
& -\int_{0}^{L} E A\left(\mathbf{N}^{\prime} \mathbf{u}\right)\left(\mathbf{N}^{\prime} \delta \mathbf{u}\right) d x+\int_{0}^{L} q_{x}(\mathbf{N} \delta \mathbf{u}) d x=0 \\
& \delta \mathbf{u}^{T}\left(-\left(\int_{0}^{L} E A \cdot \mathbf{N}^{T T} \mathbf{N}^{\prime} d x\right) \mathbf{u}+\int_{0}^{L} q_{x} \mathbf{N}^{T} d x\right)=0
\end{aligned}
$$

Beam Bending

Forms of the BVP

Strong form (differential equation):

$$
E I \cdot w^{\prime \prime \prime \prime}-q_{z}=0
$$

Weight and integrate $\downarrow \quad \uparrow$ Require point-wise fulfilment

Weighted residual form:

$$
\int_{0}^{L}\left(E I \cdot w^{\prime \prime \prime \prime}-q_{z}\right) \cdot \delta w d x=0
$$

Integration by parts \downarrow Integration by parts
Weak form (virtual work):

$$
\int_{0}^{L}\left(E I \cdot w^{\prime \prime} \cdot \delta w^{\prime \prime}-q_{z} \cdot \delta w\right) d x=0
$$

$$
\int_{0}^{L}\left(\frac{1}{2} \cdot E I \cdot\left(w^{\prime \prime}\right)^{2}-q_{z} \cdot w\right) d x=0
$$

Weak Form = Virtual Work

Virtual work: $\quad \delta W_{\mathrm{int}}=\delta W_{\mathrm{ext}}$

Principle of virtual displacements: $\quad \int_{V} \sigma \cdot \delta \varepsilon d x=\int_{0}^{L} q_{z} \cdot \delta w d x$
$\sigma=E \cdot \varepsilon$ Substitute material law:

$$
\int_{V} E \cdot \varepsilon \cdot \delta \varepsilon d x=\int_{0}^{L} q_{z} \cdot \delta w d x
$$

$\varepsilon=-\frac{d^{2} w}{d x^{2}} \cdot z$
Substitute kinematic compatibility:

$$
\int_{V} E \cdot w^{\prime \prime} \cdot \delta w^{\prime \prime} \cdot z^{2} d x=\int_{0}^{L} E I \cdot w^{\prime \prime} \cdot \delta w^{\prime \prime} d x=\int_{0}^{L} q_{z} \cdot \delta w d x
$$

Weak form from previous slide:

$$
\int_{0}^{L}\left(E I \cdot w^{\prime \prime} \cdot \delta w^{\prime \prime}-q_{z} \cdot \delta w\right) d x=0
$$

Discretization

$$
\begin{aligned}
& \int_{0}^{L}\left(E I \cdot w^{\prime \prime} \cdot \delta w^{\prime \prime}-q_{z} \cdot \delta w\right) d x=0 \\
& w(x)=\mathbf{N u}=\left[\begin{array}{ll}
N_{1}(x) & N_{2}(x)
\end{array}\right]\left\{\begin{array}{c}
u_{1} \\
u_{2}
\end{array}\right\} \\
& \int_{0}^{L} E I \cdot\left(\mathbf{N}^{\prime \prime} \mathbf{u}\right) \cdot\left(\mathbf{N}^{\prime \prime} \delta \mathbf{u}\right) \mathrm{d} x-\int_{0}^{L} q_{z}(\mathbf{N} \delta \mathbf{u}) \mathrm{d} x=0 \\
& \delta \mathbf{u}\left(\left[\int_{0}^{L} E I \cdot \mathbf{N}^{\prime T} \mathbf{N}^{\prime \prime} \mathrm{d} x\right] \mathbf{u}-\int_{0}^{L} q_{z} \mathbf{N}^{T} \mathrm{~d} x\right)=0
\end{aligned}
$$

$$
\underbrace{\left[\int_{0}^{L} E I \cdot \mathbf{N}^{n T} \mathbf{N}^{n} d x\right]}_{\text {Sitfress matix, } \mathbf{K}} \mathbf{u}=\underbrace{\int_{0}^{L} q_{z} \mathbf{N} d x}_{\text {Load vector }, \mathbf{F}} \quad \square \quad\left[\begin{array}{cc}
\frac{4 E I}{L} & \frac{2 E I}{L} \\
\frac{2 E I}{L} & \frac{4 E I}{L}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}=\left\{\begin{array}{c}
-\frac{q_{z} L^{2}}{12} \\
\frac{q_{z} L^{2}}{12}
\end{array}\right\}
$$

More lectures:

Terje's Toobox:
terje.civil.ubc.ca

