A short course on

The Finite Element Method

This video:

The Finite Element Method for Truss and Beam Elements

Terje's Toolbox is freely available at <u>terje.civil.ubc.ca</u> It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng., Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Elements

Boundary Value Problems

Forms of the BVP

Truss Member

Forms of the Truss BVP

 $\frac{du}{dx} \equiv u'$

 $\frac{d^2u}{dx^2} \equiv u''$

Weak Form = Virtual Work

Virtual work:

$$\delta W_{\rm int} = \delta W_{\rm ext}$$

Principle of virtual displacements:

$$\int_{V} \sigma \cdot \delta \varepsilon \, dV = \int_{0}^{L} q_x \cdot \delta u \, dx$$

Substitute material law:

$$\int_{V} E \cdot \varepsilon \cdot \delta \varepsilon \, dV = \int_{0}^{L} q_{x} \cdot \delta u \, dx$$

Substitute kinematic compatibility:

$$\int_{V} E \cdot u' \cdot \delta u' \, dV = \int_{0}^{L} EA \cdot u' \cdot \delta u' \, dx = \int_{0}^{L} q_x \cdot \delta u \, dx$$

Weak form from previous slide:

$$\int_{0}^{L} (-EA \cdot u' \cdot \delta u' + q_x \cdot \delta u) \, dx = 0$$

Discretization

Beam Bending

Forms of the BVP

 $\frac{d^4w}{dx^4} \equiv w^{\prime\prime\prime\prime}$

Weak Form = Virtual Work

Virtual work:

$$\delta W_{\rm int} = \delta W_{\rm ext}$$

Principle of virtual displacements:

$$\int_{V} \sigma \cdot \delta \varepsilon \, dx = \int_{0}^{L} q_{z} \cdot \delta w \, dx$$

Substitute material law:

$$\int_{V} E \cdot \varepsilon \cdot \delta \varepsilon \, dx = \int_{0}^{L} q_{z} \cdot \delta w \, dx$$

Substitute kinematic compatibility:

$$\int_{V} E \cdot w'' \cdot \delta w'' \cdot z^2 \, dx = \int_{0}^{L} EI \cdot w'' \cdot \delta w'' \, dx = \int_{0}^{L} q_z \cdot \delta w \, dx$$

Weak form from previous slide:

$$\int_{0}^{L} (EI \cdot w'' \cdot \delta w'' - q_z \cdot \delta w) \, dx = 0$$

Discretization

More lectures:

Terje's Toobox:

terje.civil.ubc.ca