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A short course on

Cross-section Analysis

This video: 
Stress Functions for the Calculation of Cross-section Constant and Stress in Saint Venant Torsion



Scope
yo, zo  =  centroid coordinates

ysc, zsc =  shear centre coordinates

A    =  cross-section area

Iy , Iz  =  moments of inertia

Iyz   =  product of inertia

q    =  orientation of principal axes

J    =  Saint Venant torsion constant

W    =  omega diagram

Cw   =  warping torsion constant

Avy, Avz =  shear area

s    =  axial stress

t    =  shear stress

qs   =  shear flow
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Cross-section constant, J
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Alternative J
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See Bredt’s formula later…



Thin-walled, Open
P(r, s) = k ⋅ 1− 4 ⋅ r
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Ti = GJi ⋅
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= GJi
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Cross-sections with Several Parts
T = Ti∑

T = GJi ⋅
dφ
dx

⎛
⎝⎜

⎞
⎠⎟∑ = dφ

dx
⋅ GJi( )∑ ≡ dφ

dx
⋅GJ

Ti = GJi ⋅
dφi
dx

= GJi
GJi( )∑ ⋅T

T = 2 ⋅ P ⋅dA
A
∫ = 2 ⋅V

𝑉 =
2
3 % 𝑘 % 𝑡 % 𝑏

τ xs =
8 ⋅r
t 2i

⎛
⎝⎜

⎞
⎠⎟
⋅ k = 8 ⋅r

t 2i

⎛
⎝⎜

⎞
⎠⎟
⋅ 3⋅T
4 ⋅ t ⋅b

⎛
⎝⎜

⎞
⎠⎟

ii

i i i i

i

ii

Ji

GJ = SGJi

Ti = 

Vi = Ti /2 à ki

τ xs =
8 ⋅r
t 2i

⎛
⎝⎜

⎞
⎠⎟
⋅ k = 8 ⋅r

t 2i

⎛
⎝⎜

⎞
⎠⎟
⋅ 3⋅T
4 ⋅ t ⋅b

⎛
⎝⎜

⎞
⎠⎟i



Checking the Torque
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Closed Cross-sections

dx

ds

 ε2

du

 ε1

  d v

du
Closed 
curve

∫ = 0

 
γ xs = ε xs,1 + ε xs,2 =

du
ds

+ d
v
dx

 
du = τ xs

G
− d
v
dx

⎛
⎝⎜

⎞
⎠⎟ ⋅ds

τ xs
G

−
d v
dx

⎛
⎝⎜

⎞
⎠⎟

ds
Closed 
curve

∫ = 0

 

τ xs

G
− dφ

dx
⋅h⎛

⎝⎜
⎞
⎠⎟ ds

Closed 
curve

∫ = τ xs

G
ds

Closed 
curve

∫ − dφ
dx

⋅ hds
Closed 
curve

∫ = 0

h ⋅ds
Closed 
curve

∫ ≡ 2 ⋅ A

 

τ xs

G
ds

Closed 
curve

∫ − dφ
dx

⋅2 ⋅A = 0

 

τ xs ds
Closed 
curve

∫ = T
J
⋅2 ⋅Ay

z

ds
h

  
1
2
⋅ds ⋅h

φ

s, v



Thin-walled, One Cell
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Visualization
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