A short course on

Cross-section Analysis

This video:

Stress Functions for the Calculation of Cross-section Constant and Stress in Saint Venant Torsion

Terje's Toolbox is freely available at <u>terje.civil.ubc.ca</u> It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng., Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Scope

<i>У</i> ₀ , <i>Z</i> ₀	=	centroid coordinates
y _{sc} , z _{sc}	=	shear centre coordinates
A	=	cross-section area
I_y, I_z	=	moments of inertia
I_{yz}	=	product of inertia
θ	=	orientation of principal axes
J	=	Saint Venant torsion constant
Ω	=	omega diagram
C_w	=	warping torsion constant
A_{vy}, A_{vz}		shear area
σ	=	axial stress
τ	=	shear stress
q_s	=	shear flow

Cross-section constant, J

Alternative J

$$\int_{A_{\Gamma}} P_{,yy} + P_{,zz} \, dA = -2 \cdot G \cdot \phi_{,x} \int_{A_{\Gamma}} dA$$

$$\int_{A_{\Gamma}} P_{yy} + P_{zz} dA = \oint_{\Gamma} \left(P_{y} dz - P_{z} dy \right)$$

$$\oint_{\Gamma} \left(P_{y} dz - P_{z} dy \right) = \oint_{\Gamma} \left(\tau_{xz} dz + \tau_{xy} dy \right) = \oint_{\Gamma} \left(\tau_{xz} \frac{dz}{ds} + \tau_{xy} \frac{dy}{ds} \right) ds = \oint_{\Gamma} \tau_{xs} ds$$

 $T = 2 \cdot \int_{A} P \cdot dA = 2 \cdot V$

 $\tau_{xs} = \left(\frac{8 \cdot r}{t_i^2}\right) \cdot k = \left(\frac{8 \cdot r}{t_i^2}\right) \cdot \left(\frac{3 \cdot T}{4 \cdot t \cdot b}\right)$

Cross-sections with Several Parts

Checking the Torque

$$T = \left(\frac{1}{2} \cdot \boldsymbol{\tau_{xs}} \cdot \frac{t}{2}\right) \cdot b \cdot \frac{2}{3} \cdot t = \frac{T}{2}$$

Closed Cross-sections

 \mathcal{E}_1

 s, \tilde{v}

 ϕ^{\bigstar}

du

ds

 \mathcal{E}_2^{-1}

 $\overline{d\tilde{v}}$

 $\frac{1}{2} \cdot ds \cdot h$

∗ds

⇒Ÿ

dx

 $\oint_{\text{Closed}} \left(\frac{\tau_{xs}}{G} - \frac{\mathrm{d}\phi}{\mathrm{d}x} \cdot h \right) \mathrm{d}s = \oint_{\text{Closed}} \frac{\tau_{xs}}{G} \mathrm{d}s - \frac{\mathrm{d}\phi}{\mathrm{d}x} \cdot \oint_{\text{Closed}} h \, \mathrm{d}s = 0$

 $\oint_{\text{Closed}\atop\text{curve}} h \cdot \mathrm{d}s \equiv 2 \cdot A$

$$\oint_{\substack{\text{Closed}\\\text{curve}}} \frac{\tau_{xs}}{G} \, \mathrm{d}s - \frac{\mathrm{d}\phi}{\mathrm{d}x} \cdot 2 \cdot A = 0$$

Thin-walled, One Cell

$P(s,r) = K \cdot \left(\frac{1}{2} + \frac{r}{t}\right) + M \cdot \left(1 - \left(\frac{2r}{t}\right)^2\right)$
--

 $q_s = \tau_{xs} \cdot t = K$

 $T = 2 \cdot \int P \cdot dA = 2 \cdot K \cdot A_m \quad \Rightarrow \quad K = \frac{T}{2 \cdot A}$

Bredt:

 $J = \frac{4 \cdot A_m^2}{\oint_{\Gamma} \frac{1}{t} \mathrm{d}s}$

Visualization

More lectures:

Terje's Toobox:

terje.civil.ubc.ca