A short course on

Cross-section Analysis

This video:
Stress Functions for the Calculation of Cross-section Constant and Stress in Saint Venant Torsion

Terje's Toolbox is freely available at terje.civil.ubc.ca
It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng.,
Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Scope

```
yo, zo = centroid coordinates
ysc, zsc}=\mathrm{ shear centre coordinates
A = cross-section area
I},\mp@subsup{I}{z}{}=\mathrm{ moments of inertia
Iyz
0 = orientation of principal axes
J = Saint Venant torsion constant
\Omega = omega diagram
Cw}=\quad\mathrm{ warping torsion constant
Avy},\mp@subsup{A}{vz}{}=\mathrm{ shear area
\sigma = axial stress
\tau = shear stress
qs}=\mathrm{ shear flow
```


Summary

Cross-section constant, J

$$
\underbrace{\left(2 \cdot \int_{A} P \cdot \mathrm{~d} A\right)}_{T}=G J \cdot \underbrace{\left(-\frac{P_{y y}+P_{z z}}{2 \cdot G}\right)}_{\phi_{x}}
$$

$$
J=-\frac{4 \cdot V}{\nabla^{2} P}
$$

Alternative J

$$
\begin{aligned}
& \int_{A_{r}} P_{y y}+P_{z z} d A=-2 \cdot G \cdot \cdot_{x} \int_{A_{r}} d A \\
& \int_{A_{r}} P_{p_{y}+}+P_{z z} d A=\oint_{\Gamma}\left(P_{v} d z-P_{z} d y\right)
\end{aligned}
$$

$$
\oint_{\Gamma}\left(P_{y} d z-P_{z} d y\right)=\oint_{\Gamma}\left(\tau_{x} d z+\tau_{m y} d y\right)=\oint_{\Gamma}\left(\tau_{x} \frac{d z}{d s} \tau_{w} \frac{d y}{d s}\right) d s=\oint_{\Gamma} \tau_{x s} d s
$$

$J=-\frac{4 \cdot V \cdot A_{\Gamma}}{\oint_{\Gamma} \tau_{x s} d s}$
See Bredt's formula later...

Thin-walled, Open

$$
P(r, s)=k \cdot\left(1-4 \cdot \frac{r^{2}}{t^{2}}\right)
$$

$$
J=-\frac{4 \cdot V}{\nabla^{2} P}
$$

$$
\left.\begin{array}{r}
V \equiv \int_{A} P \cdot \mathrm{~d} A=\int_{-t / 2}^{t / 2} \int_{-b / 2}^{b / 2} k\left(1-4 \cdot \frac{r^{2}}{t^{2}}\right) d s d r=\frac{2}{3} \cdot k \cdot t \cdot b \\
\nabla^{2} P \equiv P_{s s}+P_{s r}=-\frac{8 k}{t^{2}}
\end{array}\right\} \Rightarrow J=\frac{1}{3} \cdot t^{3} \cdot b
$$

$$
\tau_{x s}=P_{, r}=\frac{8 k}{t^{2}} \cdot r
$$

$$
\tau_{x r}=-P_{, s}=0
$$

$$
\begin{aligned}
& T=2 \cdot \int_{A} P \cdot \mathrm{~d} A=2 \cdot V \\
& \tau_{x s}=\left(\frac{8 \cdot r}{t_{i}^{2}}\right) \cdot k=\left(\frac{8 \cdot r}{t_{i}^{2}}\right) \cdot\left(\frac{3 \cdot T}{4 \cdot t \cdot b}\right)
\end{aligned}
$$

Cross-sections with Several Parts

$$
\begin{aligned}
& T=\sum T_{i} \\
& T=\sum\left(G J_{i} \cdot \frac{\mathrm{~d} \phi}{\mathrm{~d} x}\right)=\frac{\mathrm{d} \phi}{\mathrm{~d} x} \cdot \sum\left(G J_{i}\right) \equiv \frac{\mathrm{d} \phi}{\mathrm{~d} x} \cdot G J
\end{aligned}
$$

$$
\begin{aligned}
& T_{i}=G J_{i} \cdot \frac{\mathrm{~d} \phi_{i}}{\mathrm{~d} x}=\frac{G J_{i}}{\sum\left(G J_{i}\right)} \cdot T \\
& T_{i}=2 \cdot \int_{A} P \cdot \mathrm{~d} A=2 \cdot V_{i} \\
& V_{i}=\frac{2}{3} \cdot k_{i} \cdot t_{i} \cdot b_{i} \\
& \tau_{x s}=\left(\frac{8 \cdot r}{t_{i}^{2}}\right) \cdot k=\left(\frac{8 \cdot r}{t_{i}^{2}}\right) \cdot\left(\frac{3 \cdot T_{i}}{4 \cdot t_{i} \cdot b_{i}}\right)
\end{aligned}
$$

$$
\left\lvert\, \begin{aligned}
& J_{i} \\
& G J=\Sigma G J_{i} \\
& T_{i}=\frac{G J_{i}}{\sum\left(G J_{i}\right)} \cdot T \\
& V_{i}=T_{i} / 2 \rightarrow k_{i} \\
& \tau_{x s}=\left(\frac{8 \cdot r}{t_{i}^{2}}\right) \cdot k_{i}
\end{aligned}\right.
$$

Checking the Torque

$$
\begin{aligned}
& \tau_{x S}=\frac{8 \cdot \frac{t}{2}}{t^{2}} \cdot \frac{3 \cdot T}{4 \cdot t \cdot b}=\frac{3 \cdot T}{t^{2} \cdot b} \\
& T=\left(\frac{1}{2} \cdot \tau_{x S} \cdot \frac{t}{2}\right) \cdot b \cdot \frac{2}{3} \cdot t=\frac{T}{2}
\end{aligned}
$$

Closed Cross-sections
 $$
\oint_{\substack{\text { Closed } \\ \text { curve }}} \mathrm{d} u=0
$$

 $\oint_{\substack{\text { Closed } \\ \text { curve }}} \mathrm{d} u=0$

 $\oint_{\substack{\text { Closed } \\ \text { curve }}} \mathrm{d} u=0$}

Thin-walled, One Cell

$$
P(s, r)=K \cdot\left(\frac{1}{2}+\frac{r}{t}\right)+M \cdot\left(1-\left(\frac{2 r}{t}\right)^{2}\right)
$$

$$
\tau_{x s}=\frac{\partial P}{\partial r}=\frac{K}{t}-\frac{8 M r}{t^{2}}
$$

$$
K \cdot \oint_{\Gamma_{m}} \frac{1}{t} \mathrm{~d} s=\frac{T}{J} \cdot 2 \cdot A_{m}
$$

$$
K \cdot \oint_{\Gamma_{i}} \frac{1}{t} \frac{\mathrm{~d} s-4 M \cdot}{\Gamma_{\Gamma_{i}}} \frac{1}{t} \mathrm{~d} s=\frac{T}{J} \cdot 2 \cdot A_{i}
$$

$$
M=\frac{K}{4} \cdot\left(1-\frac{A_{i}}{A_{m}} \cdot \frac{\oint_{\Gamma_{m}} \frac{1}{t} \mathrm{~d} s}{\oint_{\Gamma_{i}} \frac{1}{t} \mathrm{~d} s}\right)
$$

$$
P(s, r)=K \cdot\left(\frac{1}{2}+\frac{r}{t}\right)
$$

$$
\tau_{x s}=P_{, r}=\frac{K}{t}
$$

Bredt:

$$
J=\frac{4 \cdot A_{m}^{2}}{\oint_{\Gamma_{m}} \frac{1}{t} \mathrm{~d} s}
$$

$$
q_{s}=\tau_{x s} \cdot t=K
$$

$$
T=2 \cdot \int_{A} P \cdot \mathrm{~d} A=2 \cdot K \cdot A_{m} \quad \Rightarrow \quad K=\frac{T}{2 \cdot A_{m}}
$$

Visualization

Stress:

More lectures:

Terje's Toobox:
terje.civil.ubc.ca

