A short course on

Cross-section Analysis

This video:
Shear Centre, Shear Flow, and Shear Stress from Bending

Terje's Toolbox is freely available at terje.civil.ubc.ca
It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng.,
Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Scope

```
yo, zo = centroid coordinates
ysc, zsc}=\mathrm{ shear centre coordinates
A = cross-section area
I},\mp@subsup{I}{z}{}=\mathrm{ moments of inertia
Iyz = product of inertia
0 = orientation of principal axes
J = Saint Venant torsion constant
\Omega = omega diagram
C
Avy}\mp@subsup{A}{vz}{}=\mathrm{ shear area
\sigma = axial stress
\tau = shear stress
qs}=\mathrm{ shear flow
```


Anomaly

Shear is from Change in Moment

Axial Stress

Shear Flow

$$
\begin{gathered}
q_{s} \cdot d x=\int_{A_{s}} d \sigma d A=\int_{A_{s}} \frac{d M}{I} \cdot z d A \\
q_{s}=\frac{V}{I} \cdot Q \\
Q=\int_{A_{s}} z d A
\end{gathered}
$$

$$
\Sigma M=V \cdot d x+M-M-d M=0
$$

$$
V=\frac{d M}{d x}
$$

Continuous Flow

Shear Centre

Shear Stress

Open, Closed, Solid

Closed Thin-walled Cross-section

$$
\begin{gathered}
u=\oint d u=0 \\
\gamma=\frac{d u}{d s} \\
d u=\gamma \cdot d s \\
\gamma=\frac{\tau}{G}=\frac{q_{s}}{G \cdot t} \\
d u=\frac{q_{s}}{G \cdot t} \cdot d s \\
u=\oint \frac{q_{s}}{G \cdot t} d s=0
\end{gathered}
$$

Closed Thin-walled Cross-section

$$
q_{s}(s)=q_{o}+\frac{V}{I} \cdot Q_{d e t}(s)
$$

Evaluating Q_{o}

1. Draw $Q_{\text {det }}$ for the statically determinate cut open cross-section
2. Calculate the numerator by integration of $Q_{\text {det }}$ divided by respective thicknesses
3. Calculate the denominator, which is straightforward because, for example, for a rectangular closed cross-section with width b, height h, and thickness t, it is simply $b / t+b / t+h / t+h / t$
4. Obtain the final Q-diagram by adding Q_{o} to $Q_{\text {det }}$ from the first step, remembering the minus-sign that appears on this slide

Alternative Approach

$$
\begin{aligned}
& Q_{o}=-\frac{\oint \frac{Q_{\text {det }}}{G \cdot t} d s}{\oint \frac{1}{G \cdot t} d s}=-\frac{Q_{\text {dut }}^{t} d s}{\oint_{t}} \\
& \oint(Q) \cdot\left(\frac{1}{G t}\right) d s=\oint\left(\int_{0}^{f} z \cdot t \cdot d \bar{s}\right) \cdot\left(\frac{1}{G t}\right) d s \\
& =\left[\left(\int_{0}^{1} z \cdot t \cdot d s\right) \cdot\left(\int_{0}^{s} \frac{1}{G t} d \bar{s}\right)\right]_{0}-\oint(z \cdot t) \cdot\left(\int_{0}^{s} \frac{1}{G t} \cdot d \bar{s}\right) d s \\
& =-\phi(z \cdot t) \cdot\left(\int_{0}^{1} \frac{1}{G t} \cdot d s\right) d s \\
& Q_{o}=\frac{\oint\left(\int_{0}^{1} \frac{1}{G t} \cdot d \tilde{s}\right) \cdot z \cdot t \cdot d s}{\oint_{G \cdot t} \frac{1}{d s}} \\
& Q_{o}=\frac{\oint\left(\int_{0}^{1} \cdot t \cdot d s\right) \cdot z \cdot t \cdot d s}{\oint_{t}^{1} d s} \\
& g(s)=\frac{\int_{0}^{s} \frac{1}{t} \cdot d s}{\oint_{t}^{\frac{1}{t}} d s} \\
& Q_{o}=\oint g(s) \cdot z \cdot t \cdot d s \\
& Q_{o}=\oint g(s) \cdot z \cdot t \cdot d s+\sum\left(Q_{\text {flangetit }} \cdot g_{i}\right) \\
& q_{s}(s)=\frac{V}{I} \cdot\left(Q_{o}+Q(s)\right)
\end{aligned}
$$

Known Shear Centre?

$$
q_{s}(s)=q_{o}+\frac{V}{I} \cdot Q(s)
$$

$$
\begin{aligned}
T & =\oint q_{s} \cdot h d s \\
& =\oint\left(q_{o}+\frac{V}{I} \cdot Q\right) \cdot h d s \\
& =\oint q_{o} \cdot h d s+\oint \frac{V}{I} \cdot Q \cdot h d s
\end{aligned}
$$

$$
q_{o}=-\frac{V}{I} \cdot \frac{\oint Q \cdot h d s}{\oint h d s}=-\frac{V}{2 \cdot A_{m} \cdot I} \cdot \oint Q \cdot h d s
$$

More lectures:

Terje's Toobox:
terje.civil.ubc.ca

