A short course on

Cross-section Analysis

This video:

Shear Centre, Shear Flow, and Shear Stress from Bending

Terje's Toolbox is freely available at <u>terje.civil.ubc.ca</u> It is created and maintained by Professor Terje Haukaas, Ph.D., P.Eng., Department of Civil Engineering, The University of British Columbia (UBC), Vancouver, Canada

Scope

<i>У</i> ₀ , <i>Z</i> ₀	=	centroid coordinates
y_{sc}, z_{sc}	=	shear centre coordinates
A	=	cross-section area
I_y , I_z	=	moments of inertia
I_{yz}	=	product of inertia
θ	=	orientation of principal axes
J	=	Saint Venant torsion constant
Ω	=	omega diagram
C_w	=	warping torsion constant
A_{vy}, A_{vz}	=	shear area
σ	=	axial stress
τ	=	shear stress
q_s	=	shear flow

Anomaly

Shear is from Change in Moment

Axial Stress

Shear Flow

$$q_s \cdot dx = \int_{A_s} d\sigma \, dA = \int_{A_s} \frac{dM}{I} \cdot z \, dA$$

$$q_s = \frac{V}{I} \cdot Q$$

 $Q = \sum_{i=1}^{N} z_i A_i$

 $\Sigma M = V \cdot dx + M - M - dM = 0$

$$V = \frac{dM}{dx}$$

Shear Centre

Open, Closed, Solid

Closed Thin-walled Cross-section

Closed Thin-walled Cross-section

Evaluating Q_o

- 2. Calculate the numerator by integration of Q_{det} divided by respective thicknesses
- 3. Calculate the denominator, which is straightforward because, for example, for a rectangular closed cross-section with width *b*, height *h*, and thickness *t*, it is simply b/t + b/t + h/t + h/t
- 4. Obtain the final Q-diagram by adding Q_o to Q_{det} from the first step, remembering the minus-sign that appears on this slide

Alternative Approach

$$Q_o = -\frac{\oint \frac{Q_{det}}{G \cdot t} ds}{\oint \frac{1}{G \cdot t} ds} = -\frac{\oint \frac{Q_{det}}{t} ds}{\oint \frac{1}{t} ds}$$

$$\oint(Q) \cdot \left(\frac{1}{Gt}\right) ds = \oint\left(\int_{0}^{s} z \cdot t \cdot d\tilde{s}\right) \cdot \left(\frac{1}{Gt}\right) ds$$
$$= \left[\left(\int_{0}^{s} z \cdot t \cdot d\tilde{s}\right) \cdot \left(\int_{0}^{s} \frac{1}{Gt} \cdot d\tilde{s}\right)\right]_{o} - \oint(z \cdot t) \cdot \left(\int_{0}^{s} \frac{1}{Gt} \cdot d\tilde{s}\right) ds$$
$$= -\oint(z \cdot t) \cdot \left(\int_{0}^{s} \frac{1}{Gt} \cdot d\tilde{s}\right) ds$$

$$Q_o = \frac{\oint \left(\int_0^s \frac{1}{Gt} \cdot d\tilde{s}\right) \cdot z \cdot t \cdot ds}{\oint \frac{1}{G \cdot t} ds}$$

 $Q_o = \frac{\oint \left(\int_0^s \frac{1}{t} \cdot d\tilde{s}\right) \cdot z \cdot t \cdot ds}{\oint \frac{1}{t} ds}$

$$Q_o = \oint g(s) \cdot z \cdot t \cdot ds$$

$$Q_o = \oint g(s) \cdot z \cdot t \cdot ds + \sum \left(Q_{\text{flange #}i} \cdot g_i \right)$$

$$q_s(s) = \frac{V}{I} \cdot \left(Q_o + Q(s)\right)$$

See examples at Terje's toolbox (terje.civil.ubc.ca)

Known Shear Centre?

$$q_s(s) = q_o + \frac{V}{I} \cdot Q(s)$$

$$T = \oint q_s \cdot h \, ds$$
$$= \oint \left(q_o + \frac{V}{I} \cdot Q \right) \cdot h \, ds$$
$$= \oint q_o \cdot h \, ds + \oint \frac{V}{I} \cdot Q \cdot h \, ds$$

$$q_o = -\frac{V}{I} \cdot \frac{\oint Q \cdot h \, ds}{\oint h \, ds} = -\frac{V}{2 \cdot A_m \cdot I} \cdot \oint Q \cdot h \, ds$$

More lectures:

Terje's Toobox:

terje.civil.ubc.ca