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O = B L

What do we use probabilities for?

« Will your bridge/building fail due to extreme loading in the next 50 years?

« Engineering = Decision-making under uncertainty

« Engineering = Design + Analysis

* Analysis = Models + Met|hods

Random variables
Random functions
Stochastic processes
Etc.

Probabilistic methods
Reliability methods

« Compare result with target probability

« Compare risks: Risk = Cost * Probability




How do we express a probability?

One over a thousand? One in a thousand?

A thousand to one? 0.1 percent chance?

P(F) = p,= 103

4995 to five? Reliability index of 3.097?

999 to one? Reliability index of 37

It is a number between zero and one...



Odds & Reliability Index

The odds are “n to m”

P(F) = py=O(p)

1—-P(event) = "
n+m

f=-2"(p)

_1—P(event)
P(event)




What does a probability mean?

Frequentist, classical, P(E) = 1imn_E

n—oo n

Bayesian, subjectivist, degree of belief
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Events & Venn Diagrams

AN




Complement

&

C_£ )

@ is the complement of the certain event, S

S is the complement of the null event, &



Union & Intersection




Operator Rules

Commutative: EUE,=E,UE,

ElﬂEzzEz ﬂEl = E1E2

Associative: (E,UE,)UE,=E U(E,UE,)

(E,NE,)NE,=E N(E,NE,) = E\E,E;

Distributive: (E,UE,)NE,=(E NE,)U(E,NE,)

(E1 ﬂEz)UEs :(El UE3)ﬂ(E2 UES)



MECE

Mutually exclusive and collectively exhaustive




de Morgan’s Rules




Axioms of Probability

Blaise Pascal & Pierre de Fermat (1654)
Pierre-Simon Laplace (1812)

Andrey Kolmogorov (1933)

P(E)>0

P(E,UE,)=P(E))+ P(E,)




Probability of the Complement

P(E)=1-P(E)

&

(£ )

PS)=P(EUE)=P(E)+P(E)=1 = P(E)=1-P(E)



Example

Probability of safe operations, when the failure probability is known

P(safe) =1 —p,



Union Rule

P(E, UE2)=P(E1)+P(E2)—P(E1E2)




Inclusion-Exclusion Rule

P(E, UEz UE3):P(E1)+P(E2)+P(E3)
- P(E\E,)- P(E\E,)— P(E,E;)
+ P(E\E,E,)



Conditional Probability Rule

P(E\E,)
P(E,)

P(E, | E,) =




Multiplication Rule

Conditional probability rule Multiplication rule

P(E,1E,)=" ;(EIEEi) > P(EE,)=P(E, | E,)P(E,)




Bridge locations Exam ple

Epicentre damage radius

Area source for earthquake occurrences P(E;) = P(E) = 0.1

P(E\UEy)=7?

P(E1| Ez) =0.5

P(Ey U Ey) = P(E)) + P(Ey) = 0.2 P(E, U E3) =P(E)) + P(E,) — P(E\E)
~0.1+0.1-0.05=0.15

P(E\E,) = P(E,| E,) P(E,) = (0.5) (0.1) = 0.05



Bayes’ Rule

P(EE) ,

P(E, |E,)= B

(E))

Multiplication rule rule

P(EE,) ¥ P(E,|E,)-P(E,)
P(E,)  P(E)

P(E, |E,)=

Conditional probability rule



Rule of Total Probability

P()=Y P(AIE)P(E,)

i=1

P(A)= P(AS)
= P(AE, UE,U--UE,))
= P(AE,UAE,U---UAE)

= zn:P(AEi)

=3 P(AIE,)P(E)



Example

F = flawed wood specimen
D = detection of flaw in a test

In general, P(F) = 0.008
The test device has P(D|F) = 0.9 and P(D|F) = 0.07

What is the probability that a product that is identified as flawed in a test is actually flawed?

P(D|F)
P(D)

0.9
P(F|D) = P(F) = ————.0.008 = 0.094

P(D) = P(D|F)P(F) + P(D|F)P(F) = (0.9)(0.008) + (0.07)(1 — 0.008) =



Example

S = strong ground shaking
M = moderate ground shaking
W = weak ground shaking
F = failure of the facility

Moderate ground shaking is three times more likely than strong shaking and
weak shaking is three times more likely than moderate shaking

P(F) = 0.3, 0.05 and 0.001 for S, M, and W shaking, respectively

What is P(F)?
P(F) = P(F|S)P(S)+P(F|IM)P(M)+P(F|W)P(W) = (0.3) (0.077) + (0.05) (0.231) + (0.001) (0.629) = 0.035

The rule of total probability requires MECE events, whose probability must add up to unity:
P(S)=1/(1+3+9) = 0.077 P(M)=3/(1+3+9) = 0.231 P(W)=9/(1+3+9) = 0.692

What is the probability that the earthquake was strong if the facility got damaged? Bayes' rule:
P(S|F) = P(FIS) P(S)/ P(F) = (0.3) (0.077) / 0.035 = 0.65



Statistical Dependence

Definition of INDEPENDENCE:

P(E, |E,)= P(E))

Consequence of INDEPENDENCE:

P(E\E,)= P(E,)P(E,)

Dependent Independent?




Example

Pipe 1  Pipe 2 Pipe 3

30km rupture Fault line

60km 10km | 12.5km 67.5km

Are the failure of the pipelines statistically independent?

30km
P(F)) = P(F,) = P(F;) = T T —— 0.25
30km — 10k
P(F,F,) = ——0 7 P(F,|Fy) = —— = 0.668
150km — 30km 0.25
P(F,Fy) = 30km — 10km — 12.5km B P(F,|Fy) = _0.25
1537 = 150km — 30km - 11F3) = 0.25
30km — 12.5km
P(F,F;) = = — = 0.
(F2F3) 150km — 30km P(F3|Fs) 0.26 0.583




More lectures:

Terje’s Toobox:

terje.civil.ubc.ca




