A short course on

Probabilities and Random Variables

This video:
Rules of Probability

Terje's Toolbox is freely available at terje.civil.ubc.ca

What do we use probabilities for?

- Will your bridge/building fail due to extreme loading in the next 50 years?
- Engineering $=$ Decision-making under uncertainty
- Engineering $=$ Design + Analysis
- Analysis $=$ Models + Methods

Random variables Random functions Stochastic processes Etc.

- Compare result with target probability
- Compare risks: Risk = Cost * Probability

How do we express a probability?

One over a thousand? One in a thousand?

A thousand to one?

4995 to five?
0.1 percent chance?

Reliability index of 3 ?

Reliability index of $3.09 ?$

It is a number between zero and one...

Odds \& Reliability Index

The odds are " n to m "

$$
\mathrm{P}(\mathrm{~F})=p_{f}=\Phi(-\beta)
$$

$1-P($ event $)=\frac{n}{n+m}$

$$
\beta=-\Phi^{-1}\left(p_{f}\right)
$$

$$
n=\frac{1-P(\text { event })}{P(\text { event })}
$$

What does a probability mean?

Frequentist, classical, $\mathrm{P}(E)=\lim _{n \rightarrow \infty} \frac{n_{E}}{n}$

Bayesian, subjectivist, degree of belief

Events \& Venn Diagrams

Complement

\varnothing is the complement of the certain event, S

S is the complement of the null event, \varnothing

Union \& Intersection

$$
E_{1} \cap E_{2} \equiv E_{1} E_{2}
$$

Operator Rules

Commutative:

$$
\begin{aligned}
& E_{1} \cup E_{2}=E_{2} \cup E_{1} \\
& E_{1} \cap E_{2}=E_{2} \cap E_{1} \equiv E_{1} E_{2}
\end{aligned}
$$

Associative:

$$
\left(E_{1} \cup E_{2}\right) \cup E_{3}=E_{1} \cup\left(E_{2} \cup E_{3}\right)
$$

$$
\left(E_{1} \cap E_{2}\right) \cap E_{3}=E_{1} \cap\left(E_{2} \cap E_{3}\right) \equiv E_{1} E_{2} E_{3}
$$

Distributive:

$$
\left(E_{1} \cup E_{2}\right) \cap E_{3}=\left(E_{1} \cap E_{3}\right) \cup\left(E_{2} \cap E_{3}\right)
$$

$$
\left(E_{1} \cap E_{2}\right) \cup E_{3}=\left(E_{1} \cup E_{3}\right) \cap\left(E_{2} \cup E_{3}\right)
$$

MECE

Mutually exclusive and collectively exhaustive

de Morgan's Rules

Axioms of Probability

Blaise Pascal \& Pierre de Fermat (1654)

Pierre-Simon Laplace (1812)

Andrey Kolmogorov (1933)

$$
\begin{gathered}
P(E) \geq 0 \\
P(S)=1 \\
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)
\end{gathered}
$$

Probability of the Complement

$$
P(\bar{E})=1-P(E)
$$

$$
P(S)=P(E \cup \bar{E})=P(E)+P(\bar{E})=1 \quad \Rightarrow \quad P(\bar{E})=1-P(E)
$$

Example

Probability of safe operations, when the failure probability is known

$$
\mathrm{P}(\text { safe })=1-p_{f}
$$

Union Rule

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} E_{2}\right)
$$

$$
E_{1} \cup E_{2}
$$

Inclusion-Exclusion Rule

$$
\begin{aligned}
P\left(E_{1} \cup E_{2} \cup E_{3}\right)= & P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right) \\
& -P\left(E_{1} E_{2}\right)-P\left(E_{1} E_{3}\right)-P\left(E_{2} E_{3}\right) \\
& +P\left(E_{1} E_{2} E_{3}\right)
\end{aligned}
$$

Conditional Probability Rule

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} E_{2}\right)}{P\left(E_{2}\right)}
$$

$$
\frac{P\left(E_{1} E_{2}\right)}{P\left(E_{2}\right)}=\frac{\left(\frac{n_{12}}{n}\right)}{\left(\frac{n_{2}}{n}\right)}=\frac{n_{12}}{n_{2}}
$$

Multiplication Rule

Conditional probability rule
Multiplication rule

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} E_{2}\right)}{P\left(E_{2}\right)}
$$

$$
P\left(E_{1} E_{2}\right)=P\left(E_{1} \mid E_{2}\right) P\left(E_{2}\right)
$$

Bridge locations
Epicentre damage radius
Area source for earthquake occurrences

Example

$$
\mathrm{P}\left(E_{1}\right)=\mathrm{P}\left(E_{2}\right)=0.1
$$

$$
\mathrm{P}\left(E_{1} \cup E_{2}\right)=?
$$

$$
\mathrm{P}\left(E_{1} \mid E_{2}\right)=0.5
$$

$\mathrm{P}\left(E_{1} \cup E_{2}\right)=\mathrm{P}\left(E_{1}\right)+\mathrm{P}\left(E_{2}\right)=\underline{\mathbf{0 . 2}}$

$$
\begin{aligned}
\mathrm{P}\left(E_{1} \cup E_{2}\right) & =\mathrm{P}\left(E_{1}\right)+\mathrm{P}\left(E_{2}\right)-\mathrm{P}\left(E_{1} E_{2}\right) \\
& =0.1+0.1-0.05=\underline{\mathbf{0 . 1 5}}
\end{aligned}
$$

$$
\mathrm{P}\left(E_{1} E_{2}\right)=\mathrm{P}\left(E_{1} \mid E_{2}\right) \mathrm{P}\left(E_{2}\right)=(0.5)(0.1)=0.05
$$

Bayes' Rule

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{2} \mid E_{1}\right)}{P\left(E_{2}\right)} P\left(E_{1}\right)
$$

$$
\begin{aligned}
& \text { Multiplication rule rule } \\
& P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} E_{2}\right)}{P\left(E_{2}\right)} \stackrel{\downarrow}{=} \frac{P\left(E_{2} \mid E_{1}\right) \cdot P\left(E_{1}\right)}{P\left(E_{2}\right)} \\
& \text { Conditional probability rule }
\end{aligned}
$$

Rule of Total Probability

$$
P(A)=\sum_{i=1}^{n} P\left(A \mid E_{i}\right) P\left(E_{i}\right)
$$

$$
\begin{aligned}
P(A) & =P(A S) \\
& =P\left(A\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)\right) \\
& =P\left(A E_{1} \cup A E_{2} \cup \cdots \cup A E_{n}\right) \\
& =\sum_{i=1}^{n} P\left(A E_{i}\right) \\
& =\sum_{i=1}^{n} P\left(A \mid E_{i}\right) P\left(E_{i}\right)
\end{aligned}
$$

Example

$$
\begin{gathered}
F=\text { flawed wood specimen } \\
D=\text { detection of flaw in a test }
\end{gathered}
$$

$$
\text { In general, } P(F)=0.008
$$

$$
\text { The test device has } P(D \mid F)=0.9 \text { and } P(D \mid \bar{F})=0.07
$$

What is the probability that a product that is identified as flawed in a test is actually flawed?

$$
P(F \mid D)=\frac{P(D \mid F)}{P(D)} P(F)=\frac{0.9}{0.07664} \cdot 0.008=\mathbf{0 . 0 9 4}
$$

$$
P(D)=P(D \mid F) P(F)+P(D \mid \bar{F}) P(\bar{F})=(0.9)(0.008)+(0.07)(1-0.008)=0.07664
$$

Example

$$
\begin{gathered}
S=\text { strong ground shaking } \\
M=\text { moderate ground shaking } \\
W=\text { weak ground shaking } \\
F=\text { failure of the facility }
\end{gathered}
$$

Moderate ground shaking is three times more likely than strong shaking and weak shaking is three times more likely than moderate shaking

$$
P(F)=0.3,0.05 \text { and } 0.001 \text { for } S, M \text {, and } W \text { shaking, respectively }
$$

What is $P(F)$?
$P(F)=P(F \mid S) P(S)+P(F \mid M) P(M)+P(F \mid W) P(W)=(0.3)(0.077)+(0.05)(0.231)+(0.001)(0.629)=\underline{0.035}$

The rule of total probability requires MECE events, whose probability must add up to unity:

$$
P(S)=1 /(1+3+9)=0.077 \quad P(M)=3 /(1+3+9)=0.231 \quad P(W)=9 /(1+3+9)=0.692
$$

What is the probability that the earthquake was strong if the facility got damaged? Bayes' rule:

$$
P(S \mid F)=P(F \mid S) P(S) / P(F)=(0.3)(0.077) / 0.035=\underline{\mathbf{0 . 6 5}}
$$

Statistical Dependence

Definition of INDEPENDENCE:

$$
P\left(E_{1} \mid E_{2}\right)=P\left(E_{1}\right)
$$

Consequence of INDEPENDENCE:

$$
P\left(E_{1} E_{2}\right)=P\left(E_{1}\right) P\left(E_{2}\right)
$$

Dependent

Independent?

Example

Are the failure of the pipelines statistically independent?

$$
P\left(F_{1}\right)=P\left(F_{2}\right)=P\left(F_{3}\right)=\frac{30 \mathrm{~km}}{150 \mathrm{~km}-30 \mathrm{~km}}=0.25
$$

$$
\begin{array}{ll}
P\left(F_{1} F_{2}\right)=\frac{30 \mathrm{~km}-10 \mathrm{~km}}{150 \mathrm{~km}-30 \mathrm{~km}}=0.167 & P\left(F_{1} \mid F_{2}\right)=\frac{0.167}{0.25}=0.668 \\
P\left(F_{1} F_{3}\right)=\frac{30 \mathrm{~km}-10 \mathrm{~km}-12.5 \mathrm{~km}}{150 \mathrm{~km}-30 \mathrm{~km}}=0.0625 & P\left(F_{1} \mid F_{3}\right)=\frac{0.0625}{0.25}=0.25 \\
P\left(F_{2} F_{3}\right)=\frac{30 \mathrm{~km}-12.5 \mathrm{~km}}{150 \mathrm{~km}-30 \mathrm{~km}}=0.1458 & P\left(F_{2} \mid F_{3}\right)=\frac{0.1458}{0.26}=0.583
\end{array}
$$

More lectures:

Terje's Toobox:
terje.civil.ubc.ca

