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Random Variables 
Discrete Random Variables 
A discrete random variable has a discrete sample space. For example, the outcomes of a 
discrete random variable may be damage states 1, 2, 3, and 4. Consider a random variable 
denoted by uppercase X, with outcomes, i.e., realizations, denoted by lowercase x. The 
probability of occurrence of each outcome of the discrete random variable is given by the 
probability mass function (PMF): 

  (1) 

The PMF has the following property: 

  (2) 

where N is the number of possible outcomes. An alternative presentation of the 
probability distribution is the cumulative distribution function (CDF):  

  (3) 

The CDF has the two properties F(-∞)=0 and F(∞)=1. Yet another representation of the 
probability distribution is the complementary CDF (CCDF): 

  (4) 

which has the properties G(-∞)=1 and F(∞)=0. 

Partial Descriptors 
A random variable is completely defined by its probability distribution. However, “partial 
descriptors” are useful in lieu of having the complete distribution. The partial descriptors 
are equal to or related to the parameters of the probability distributions that are listed later 
in this document. The partial descriptors are also related to the statistical moments of the 
probability distribution. The first moment of the distribution is the mean of the random 
variable: 

  (5) 

The second moment is called the mean square of the random variable: 

  (6) 

Conversely, central moments are taken about the mean of the random variable. As a 
result, the first central moment is zero. The second central moment is the variance of the 
random variable, which is the square of the standard deviation: 

pX (x) ≡ P(X = x)

pX (xi )
i=1

N

∑ = 1

FX (x) ≡ P(X ≤ x) = P(X ≤ xi ) = pX (x j )
j=1

i

∑

GX (x) = 1− FX (x)

µX = E[X]= xi ⋅ pX (xi )
i=1

N

∑

E[X 2 ]= xi
2 ⋅ pX (xi )

i=1

N

∑
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  (7) 

Several concepts for discrete random variables, such as coefficient of variation and 
coefficient of skewness are the same for continuous random variables. Therefore, further 
details are provided in the document on continuous random variables.  

The Bernoulli Distribution 
Consider a discrete random variable, X, with two possible outcomes: failure and success, 
i.e., 0 and 1, respectively. The probability of success is denoted p. Consequently, the 
probability of failure is 1-p and the Bernoulli PMF is thus defined: 

  (8) 

Using earlier formulas, the mean is p and the variance is p(1-p). To specify that a random 
variable, X, has the Bernoulli distribution, one writes: X~Bernoulli(p). 

The Binomial Distribution 
Consider a sequence of mutually independent Bernoulli trials with constant success 
probability, p. Let the random variable X denote the number of successes in n trials. The 
PMF for this random variable is the binomial distribution 

  (9) 

The mean of X is np and its variance is np(1-p). To specify that a random variable, X, has 
the binomial distribution, one writes: X~Binomial(p,n). 

The Geometric Distribution 
The number of trials, S, until success, and the number of trials between successes, in a 
Bernoulli sequence is given by the geometric distribution: 

  (10) 

The mean recurrence time, sometimes called return period, is 1/p. The variance is (1-
p)/p2. To specify that a random variable, S, has the geometric distribution, one writes: 
S~Geometric(p). 

The Negative Binomial Distribution 
The number of Bernoulli trials, W, until k occurrences of success is 

  (11) 

where Si is the number of trials between success number i-1 and success number i. The 
distribution of S is geometric. Combined with the fact that Eq. (11) is a sum of random 
variables, the mean and variance of W is  

  (12) 

σ X
2 = Var[X]= E[(x − µX )

2 ]= (xi − µX )
2 ⋅ pX (xi )

i=1

N

∑

p(x) =
1− p   for   x = 0
p       for   x = 1

⎧
⎨
⎪

⎩⎪

p(x) =
n
x

⎛
⎝⎜

⎞
⎠⎟
⋅ px ⋅ (1− p)n− x

p(s) = p ⋅ (1− p)s−1

W = S1 + S2 ++ Sk

µW = k ⋅µS = k ⋅
1
p
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  (13) 

The distribution type for W is the negative binomial distribution: 

  (14) 

To specify that a random variable, W, has the Bernoulli distribution, one writes: 
W~NegativeBinomial(p,k). 

The Poisson Distribution 
In situations where the number of Bernoulli trials is infinite, such as when every time 
instant is considered a trial, the Poisson distribution gives the number of successes, x: 

  (15) 

where l is the rate of occurrence of success per unit time and T is the time period under 
consideration. The mean number of occurrences is lT, which is also equal to the 
variance. To specify that a random variable, X, has the Poisson distribution, one writes: 
X~Poisson(l,T). 

Continuous Random Variables 
The sample space of a continuous random variable is the whole or part of the real 
continuous axis. Consider a random variable denoted by uppercase X, with outcomes, i.e., 
realizations, denoted by lowercase x. A continuous random variable is associated with a 
probability density function (PDF): 

  (16) 

which has the following property: 

  (17) 

The CDF for a continuous random variable is 

  (18) 

which has the properties F(-∞)=0 and F(∞)=1. The PDF can be computed from the CDF 
by differentiation: 

  (19) 

Another representation of the probability distribution of X is the complementary CDF 
(CCDF): 

σW
2 = k ⋅σ S

2 = k ⋅1− p
p2

p(w) =
w −1
k −1

⎛
⎝⎜

⎞
⎠⎟
⋅ pk ⋅ (1− p)w− k

p(x) = (λ ⋅T )
x

x!
e−λ⋅T

fX (x) ≡ P(x ≤ X ≤ x + dx)

fX (x)dx = 1
−∞

∞

∫

FX (x) ≡ P(X ≤ x) = fX (x)dx
−∞

x

∫

f (x) = dF(x)
dx
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  (20) 

Partial Descriptors 
A random variable is completely defined by its probability distribution. However, “partial 
descriptors” are useful in lieu of having the complete distribution. The partial descriptors 
are equal to or related to the parameters of the probability distributions that are listed later 
in this document. The partial descriptors are also related to the statistical moments of the 
probability distribution. The first moment of the distribution is the mean of the random 
variable: 

  (21) 

In passing, it is noted that the mean can also be calculated as the area underneath the 
CCDF. Because the PDF is obtained by differentiation of the CCDF, with a negative sign 
in front, Eq. (21) turns into: 

  

Integration by parts yields: 

  

The boundary term vanishes, hence: 

  

The second moment is called the mean square of the random variable: 

  (22) 

Conversely, central moments are taken about the mean of the random variable. As a 
result, the first central moment is zero. The second central moment is the variance of the 
random variable, which is the square of the standard deviation: 

  (23) 

By expanding Eq. (23) one finds that “the variance is equal to the mean square minus the 
square of the means:”  

  (24) 

The coefficient of variation of a random variable is defined as: 

GX (x) = 1− FX (x)

µX = E[X]= x ⋅ fX (x) dx
−∞

∞

∫

E[X]= − x ⋅G(x)
dx

dx
0

∞

∫

E[X]= − x ⋅G(x)
dx

dx
0

∞

∫ = − x ⋅G(x)[ ]0
∞ + 1⋅G(x)dx

0

∞

∫

E[X]= G(x)dx
0

∞

∫

E[X 2 ]= x2 ⋅ fX (x) dx
−∞

∞

∫

σ X
2 = Var[X]= E[(x − µX )2 ]= (x − µX )2 ⋅ fX (x) dx

−∞

∞

∫

σ X
2 = E[X 2 ]− µX

2
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  (25) 

The coefficient of skewness of a random variable is related to the third central moment as 
follows: 

  (26) 

The coefficient of Kurtosis provides a measure of the flatness of the distribution and is 
related to the fourth central moment as follows: 

  (27) 

 
Figure 1: Plots of selected continuous PDFs from the GNU Scientific Library Reference.  
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The Normal Distribution 
The lines in Figure 1 display several PDFs for a random variable with different 
probability distributions. The normal distribution is one of them. Among many other 
applications, the normal distribution emerges in situations where the random variable is a 
sum of many underlying and independent variables. The central limit theorem states that 
under such circumstances the probability distribution of the sum approaches the normal 
distribution, sometimes called the Gaussian distribution. The normal distribution is a two-
parameter distribution in which the two parameters directly represent the mean and 
standard deviation. To specify that a random variable, X, has the normal distribution, one 
writes: X~N(µ,s). The implementation in Rt employs the following notation: 

 

PDF 
 

mean= µ 

stdv= s 

µ= mean 

s= stdv 

The Lognormal Distribution 
In the same way as the normal distribution arise from summation of random phenomena 
the lognormal distribution emerge in products of variables. In fact, the product of 
lognormal random variables is also lognormally distributed. For pedagogical purposes, 
consider the product of n independent random variables: 

  (28) 

Taking the natural logarithm on both sides yields 

  (29) 

In accordance with the central limit theorem, ln(X) approaches the normal distribution. 
By definition, that means that X has the lognormal distribution. In other words, if Y is a 
normal random variable and 
  (30) 

then X is said to have the lognormal distribution. To establish the lognormal distribution 
it is possible to use the normal distribution as a starting point. To that end, consider the 
probability transformation between Y and X, given the functional relationship between the 
two variables in Eq. (30): 

  (31) 

  (32) 

f (x,µ,σ ) = 1
2π ⋅σ 2

⋅ exp −
1
2
⋅
x − µ
σ

⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

X = Z1 ⋅Z2Zn

ln X( ) = ln Z1( ) + ln Z2( ) ++ ln Zn( )

Y = ln(X)

FX (x) = FY (y) = FY (ln(x))

fX (x) ⋅dx = fY (y) ⋅dy     ⇒      fX (x) = dy
dx

⋅ fY (y) = 1
x
⋅ fY ln(x)( )
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where fY and FY are the normal PDF and CDF, respectively. By employing the standard 
normal distribution, Eqs. (31) and (32) turn into 

  (33) 

  (34) 

and solving for x in Eq. (34) yields the inverse lognormal CDF in terms of the inverse 
normal CDF: 

  (35) 

The remaining question is how to evaluate the parameters µY and sY, which are the mean 
and standard deviation of the normal random variable Y=ln(X), not the lognormal random 
variable X. Several options are possible. One is having µX and sX. It can then be shown 
that the sought parameters are 

  (36) 

  (37) 

Another option is having the median and “dispersion” of X. To understand this, consider 
first the median of the normal random variable Y, denoted mY, which for the normal 
distribution equals the mean, µY. Because of Eq. (30), it is clear that the sought parameter 
µY is 

  (38) 

As an aside note, this implies that the term ln(x)-µY in the argument of the distributions 
above can be written as 

  (39) 

The so-called dispersion is merely another name for sY. In Rt the following symbols are 
used for µY and sY: 

  (40) 

As a result, to specify that a random variable, X, has the lognormal distribution, one 
writes: X~LN(z,s). The implementation in Rt is: 

 

f (x) = 1
x
⋅ϕ ln(x)− µY

σ Y

⎛
⎝⎜

⎞
⎠⎟

F(x) = Φ ln(x)− µY
σ Y

⎛
⎝⎜

⎞
⎠⎟

x = eΦ
−1( p)⋅σY +µY

µY = ln(µX )−
1
2
⋅ ln 1+ σ X

µX

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟

σ Y = ln σ X

µX

⎛
⎝⎜

⎞
⎠⎟

2

+1
⎛

⎝
⎜

⎞

⎠
⎟

µY = ln(mX )

ln(x) − µY = ln(x) − ln(mX ) = ln
x
mX

⎛
⎝⎜

⎞
⎠⎟

µY = ζ
σ Y =σ
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PDF 
 

mean=µX= 
 

stdv=sX= 
 

z=µY=ln(mX)= 
 

s =sY=dispersion= 
 

The Uniform Distribution 
The uniform distribution is often thought to represent situations with little knowledge. 
This lack of information is expressed by distributing the probability density uniformly 
over a range of outcomes. To specify that a random variable, X, has the uniform 
distribution, one writes: X~U(a,b). In Rt, the implementation is:  

 Rt 

PDF  

mean=  

stdv=  

a=  

b=  

The Exponential Distribution 
Among other applications, the exponential distribution emerges for the time between 
occurrences, T, which is equal to the time until the first occurrence, in the Poisson 
process. It is a one-parameter distribution with PDF 

  (41) 

with mean and standard deviation 1/l. To specify that a random variable, X, has the 
exponential distribution, one writes: X~Exp(l). However, in Rt the exponential 
distribution is implemented as a two-parameter distribution that includes a shift 

f (x,ζ ,σ ) = 1
x ⋅ 2π ⋅σ 2

⋅ exp −
1
2
⋅
ln(x) −ζ

σ
⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

exp ζ +
σ 2

2
⎛
⎝⎜

⎞
⎠⎟

exp σ 2( ) −1 ⋅ exp ζ +
σ 2

2
⎛
⎝⎜

⎞
⎠⎟

ln(mean) − 1
2
⋅ ln 1+ stdv

mean
⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

ln stdv
mean

⎛
⎝⎜

⎞
⎠⎟
2

+1
⎛

⎝⎜
⎞

⎠⎟

f (x,a,b) = 1
b − a

a + b
2

b − a
12

mean − stdv ⋅ 3

mean + stdv ⋅ 3

f (t) = λ ⋅ exp(−λ ⋅ t)
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parameter and a different notation, as shown in the table below. Therefore, another way 
to specify that a random variable, X, has the exponential distribution is X~Exp(µ,xo). 

 Rt 

PDF 
 

mean= µ+x0 

stdv= µ 

µ= stdv 

x0= mean-µ 

The Gamma Distribution 
Among other applications, the gamma distribution models the time until occurrence 
number x in a Poisson process. Thus, it represents the sum of independent exponentially 
distributed random variables and contains the exponential distribution as a special case. 
The PDF of this distribution includes the gamma-function, G. Like the lognormal 
distribution, the gamma distribution is limited to positive realizations. To specify that a 
random variable, X, has this distribution, one writes: X~Gamma(a,b). The 
implementation in Rt is: 

 Rt 

PDF 
 

mean=  
stdv=  

a= 
 

b= 
 

 
Viewed as a waiting time, x, in a Poisson process, and in several other situations, the 
gamma distribution is often written as  

  (42) 

where a and b are related to the parameters n and k as follows: a=k and b=1/n. Then the 
mean is k/n and the standard deviation is √k/n. Using the distribution withn and k, the 
postulation that a random variable, X, has the Gamma distribution can also be written 

f (x,µ, x0 ) =
1
µ
⋅ exp −

1
µ
⋅ x − x0( )⎛

⎝⎜
⎞
⎠⎟

f (x,a,b) = 1
Γ(a) ⋅ba

⋅ xa−1 ⋅ exp −
x
b

⎛
⎝⎜

⎞
⎠⎟

a ⋅b

a ⋅b

mean
stdv

⎛
⎝⎜

⎞
⎠⎟
2

stdv2

mean

f (x) = ν(νx)k−1e−νx

Γ(k)
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X~Gamma(n,k). Because of the different parameterization options for the Gamma 
distribution it is necessary to apply great caution in the specification of which form of the 
distribution is intended.  

The Beta Distribution 
The original beta distribution is defined in the interval 0 to 1, i.e., it is a bounded 
distribution. To specify that a random variable, X, has this basic beta distribution, one 
writes: X~Beta(a,b). The following table provides the information for this basic zero-to-
one distribution.  

PDF  

mean=  

stdv= 
 

 
A more versatile beta distribution is obtained by letting the user specify the interval. 
Instead of being defined in the interval 0 to 1, the beta distribution that is available in Rt 
is defined in the interval min to max. This yields a particularly handy distribution, but the 
versatility comes at the cost of having to specify four distribution parameters. To specify 
that a random variable, X, has this full beta distribution, one writes: 
X~Beta(a,b,min,max). Because there are four distribution parameters, the distribution 
parameters cannot be determined uniquely from the mean and standard deviation. The 
implementation in Rt is: 

 Rt 

PDF 
 

mean=  

stdv= 
 

 

f (x,a,b) = Γ(a + b)
Γ(a) ⋅Γ(b)

⋅ xa−1 ⋅ 1− x( )b−1

a
a + b

1
a + b

⋅ a ⋅b
a + b +1

f (x,a,b,min,max) = 1
max − min

⋅
Γ(a + b)
Γ(a) ⋅ Γ(b)

⋅
x − min

max − min
⎛
⎝⎜

⎞
⎠⎟
a−1

⋅ 1− x − min
max − min

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
b−1

min +
a

a + b
⋅ max - min( )

1
a + b

⋅
a ⋅b

a + b +1
⋅ (max - min)
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The Laplace Distribution 
To specify that a random variable, X, has the Laplace distribution, one writes: 
X~Laplace(a) or X~Laplace(a,xo). Implementation in Rt: 

 Rt 

PDF 
 

mean=  

stdv=  

a=  

x0=  

The Chi-square Distribution 
Let Y be a collection of n normally distributed random variables with unit variances. The 
sum of the squares of these random variables, i.e.,  

  (43) 

is a random variable that has the chi-squared distribution with n degrees of freedom. The 
implementation in Rt is: 

 Rt 

PDF 
 

mean=  

stdv=  

n= 
 

x0=  

The t-distribution Distribution 
Let Y1 be a normally distributed random variable and let Y2 be a chi-squared random 
variable with x0=0 and n degrees of freedom. Then the ratio 

  (44) 

f (x,a, x0 ) =
1
2a

⋅ exp −
x − x0
a

⎛
⎝⎜

⎞
⎠⎟

x0

2 ⋅a

stdv
2

mean

X = Yi
2

i=1

ν

∑

f (x,ν, x0 ) =
1

2 ⋅ Γ(ν / 2)
⋅
x − x0
2

⎛
⎝⎜

⎞
⎠⎟

ν
2
−1

⋅ exp x − x0
2

⎛
⎝⎜

⎞
⎠⎟

ν + x0

2ν

stdv2

2
mean −ν

X =
Y1
Y2
ν



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Random Variables Updated August 30, 2023 Page 12 

is a random variable that has the t-distribution. The implementation in Rt is: 

 Rt 

PDF 
 

mean=  

stdv= 
    for n>2 

n= 
 

x0=  
 

The Logistic Distribution 
Implementation in Rt: 

 Rt 

PDF 

 

mean=  

stdv=  

a= 
 

x0=  

The Rayleigh Distribution 
The original Rayleigh distribution is a one-parameter distribution that is defined only for 
positive values of the random variable, X, with PDF: 

  (45) 

Sometimes a parameter conversion from l to s is employed, where l=1/2s2 so that the 
PDF is written 

  (46) 

f (x,ν, x0 ) =
1

2 ⋅ Γ(ν / 2)
⋅
x − x0
2

⎛
⎝⎜

⎞
⎠⎟

ν
2
−1

⋅ exp x − x0
2

⎛
⎝⎜

⎞
⎠⎟

x0

ν
ν − 2

2 ⋅ stdv2

stdv2 −1

mean

f (x,a, x0 ) =
exp − x − x0

a
⎛
⎝⎜

⎞
⎠⎟

a ⋅ 1+ exp − x − x0
a

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
2

a + x0

a ⋅π 3

stdv ⋅ 3
π

mean − a

f (x) = 2 ⋅λ ⋅ x ⋅e−λx
2

f (x) = x
σ 2 ⋅e

− x2

2σ 2
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in which case a random variable, X, with the Rayleigh distribution is written 
X~Rayleigh(s). Because of the different parameterization options for the Gamma 
distribution it is necessary to apply great caution in the specification of which form of the 
distribution is intended. Furthermore, the implementation in Rt involves a shift 
parameter, which means that a random variable, X, with the Rayleigh distribution is 
written X~Rayleigh(s, xo): 

 Rt 

PDF 
 

mean= 
 

stdv= 
 

s=  

x0= 
 

The Gumbel Distribution 
Although another document addresses extreme value distributions and power law models 
the implementation of the Gumbel and Weibull distributions in Rt are documented here, 
starting with the Gumbel distribution: 

 Rt 

PDF  

mean=  

stdv=  

a= 𝜋
𝑠𝑡𝑑𝑣 ∙ √6

 

b=  

where g is the Euler constant, which is approximately equal to 0.577215665. 

The Weibull Distribution 
Implementation in Rt: 

f (x,σ , x0 ) =
x
σ 2 ⋅ exp −

1
2
⋅
x − x0
σ

⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

x0 +σ ⋅ π
2

σ ⋅
4 − π
2

stdv
4 − π
2

mean − σ ⋅
π
2

f (x,a,b) = a ⋅b ⋅ exp − b ⋅ exp −a ⋅ x( ) + a ⋅ x( )( )
ln(b) + γ

a

π
a ⋅ 6

exp a ⋅mean − γ( )
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 Rt 

PDF 
 

mean= 
 

stdv= 
 

Extreme Value Models 
This section addresses continuous random variables that represent the maximum of 
several outcomes of another continuous random variable. For the sake of the following 
derivations, consider a continuous random variable Z. In any one realization the 
probability that the outcome is less than z is the CDF, FZ(z). Now consider a situation 
where there are n independent realizations of the random variable. In this situation it is 
often the maximum realization that is of interest, perhaps because it represents a loading 
value that may exceed some capacity. To address the probability that the maximum 
realization will not exceed a threshold, x, first define X as a new random variable, where 

  (47) 

Under the condition that the random variables Zi are independent and identically 
distributed the probability that the maximum X does not exceed the threshold x is  

  (48) 

where it is emphasized that FZ is the CDF for the original random variable Z. This is the 
CDF for the extreme value of Z in n “experiments.” The corresponding PDF is obtained 
by differentiation: 

  (49) 

where it is reiterated that it is the CDF and PDF of the original random variable Z that 
enter the expression. 

f (x,a,b) = b
ab

⋅ xb−1 ⋅ exp −
x
a

⎛
⎝⎜

⎞
⎠⎟
b⎛

⎝⎜
⎞

⎠⎟

a ⋅ Γ 1+ 1
b

⎛
⎝⎜

⎞
⎠⎟

a ⋅ Γ 1+ 2
b

⎛
⎝⎜

⎞
⎠⎟
− Γ 1+ 1

b
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
2

X = max Z1,Z2 ,,Zn( )

FX (x) = P X ≤ x( )
= P Z1 ≤ x  Z2 ≤ x  Zn ≤ x( )
= P Z1 ≤ x( ) ⋅P Z2 ≤ x( )P Zn ≤ x( )
= FZ (x)

n

fX (x) =
d
dx
FX (x)

=
d
dx
FZ (x)

n

= n ⋅FZ (x)
n−1 ⋅ fZ (x)



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Random Variables Updated August 30, 2023 Page 15 

When the number of experiments is large then the distribution for the extreme value, X, is 
mostly dependent on the tail behaviour of the underlying probability distribution for Z. It 
is rather insensitive to the overall behaviour of the actual underlying probability 
distribution. For these situations several asymptotic extreme-value distributions are 
developed. They cannot be synthesized into one distribution because the result is 
different for minimum and maximum values. Furthermore, the result is different for 
different types of tail-behaviour in the underlying probability distribution.  

Type I Distributions (Gumbel) 
This distribution addresses the maximum value of many experiments. The “Type I” 
assumption is that the tail of the underlying distribution varies exponentially: 

  (50) 

The tails are unbounded. This type of tail is found in the normal, exponential, and gamma 
distributions. Application of this underlying tail distribution in extreme value theory 
yields the Type I Largest and Type I Smallest distributions, for the maximum and 
minimum of many realizations, respectively. The resulting distributions are named after 
Gumbel: 

  (51) 

Type II Distribution (Frechet) 
Here the left tail of the underlying distribution is bounded at zero, while the upper tail 
varies according to 

  (52) 

where c1 and c2 are constants. The derived Type II extreme value distribution is named 
after Frechet: 

    x>µ (53) 

Type III Distribution (Weibull) 
The fundamental assumption for Type III distributions is that the tail of the underlying 
random variable is bounded by a value z0: 

  (54) 

This results in the extreme value distributions named after Weibull. A simple sign-change 
in Frechet’s distribution yields the reversed Type III Weibull distribution: 

       x<µ (55) 

The Weibull distribution is written: 

FZ (z) = 1− exp −h(z)( )

F(x) = exp − exp x − µ
σ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

FZ (z) = 1− c1 ⋅
1
z

⎛
⎝⎜

⎞
⎠⎟
c2

F(x) = exp −
x − µ
σ

⎛
⎝⎜

⎞
⎠⎟
−α⎛

⎝⎜
⎞

⎠⎟

FZ (z) = 1− c1 ⋅ z0 − z( )c2

F(x) = exp − −
µ − x
σ

⎛
⎝⎜

⎞
⎠⎟
α⎛

⎝⎜
⎞

⎠⎟
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       for x≥0 (56) 

       for x≥0 (57) 

where k>0 is the shape parameter and l>0 is the scale parameter.  

Generalized Extreme Value Distribution 

  (58) 

where µ is the location parameter, s   is the scale parameter, and x is the shape parameter. 

Theorem of Total Probability  
Recall that the rule of total probability is applicable only when the conditioning is on 
mutually exclusive and collectively exhaustive events. The rule of total probability to 
obtain the probability of an event, having probability values conditioned upon the 
outcomes of a continuous random variable: 

  (59) 

The rule of total probability to obtain a continuous probability distribution, having the 
distribution conditioned on some events is: 

  (60) 

where N is the number of mutually exclusive and collectively exhaustive events, which 
could be the outcomes of a discrete random variables. The rule of total probability to 
obtain a probability distribution, having the distribution conditioned on the outcomes of 
another continuous random variable is: 

  (61) 

For discrete random variables, the rule of total probability to obtain the probability of an 
event, having probability values conditioned upon the outcomes of the random variable: 

  (62) 

The rule of total probability to obtain a probability distribution, having the distribution 
conditioned on the outcomes of another random variable or some other discrete events: 

F(x) = 1− exp −
x
λ

⎛
⎝⎜

⎞
⎠⎟
k⎛

⎝⎜
⎞

⎠⎟

f (x) = k
λ
⋅
x
λ

⎛
⎝⎜

⎞
⎠⎟
k−1

⋅ exp −
x
λ

⎛
⎝⎜

⎞
⎠⎟
k⎛

⎝⎜
⎞

⎠⎟

F(x) = exp − 1+ ξ ⋅ x − µ
σ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
−1 ξ⎛

⎝
⎜

⎞

⎠
⎟

P(A) = P(A | x) ⋅ f (x)dx
−∞

∞

∫

f (x) = f (x | Ei ) ⋅P(Ei )
i=1

N

∑

f (x) = f (x | y) ⋅ f (y)dy
−∞

∞

∫

P(A) = P(A | xi ) ⋅ p(xi )
i=1

N

∑
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  (63) 

Joint and Conditional Distributions 
While the probability distribution for an individual random variable is called “marginal,” 
the probability distribution for multiple random variables is called a “multivariate” or 
“joint” distribution. The joint PDF of two continuous random variables X and Y is defined 
as 

  (64) 

The joint PDF has the following properties: 

  (65) 

The relationship between the joint PDF and the joint CDF is 

  (66) 

which implies that 

  (67) 

Having the joint distribution, conditional distributions are defined in accordance with the 
conditional probability rule for events: 

  (68) 

As a result, the joint distribution can be expressed in terms of conditional distributions as 

  (69) 

Two random variables, X and Y, are said to be statistically independent if  

      or       (70) 

Statistical independence implies that the joint distribution for two statistically 
independent random variables, X and Y, is the product of the marginals: 

pX (x) = pX (x | yi ) ⋅ pY (yi )
i=1

N

∑

f (x, y) ⋅dx ⋅dy = P x < X ≤ x + dx  y < Y ≤ y + dy( )

f (x, y) ≥ 0

f (y) = f (x, y)dx
−∞

∞

∫

f (x) = f (x, y)dy
−∞

∞

∫

f (x, y)dxdy
−∞

∞

∫
−∞

∞

∫ = 1

F(x, y) = P(X ≤ x Y ≤ y) = f (x, y)dxdy
−∞

y

∫
−∞

x

∫

f (x, y) = ∂2F(x, y)
∂x∂y

f (x | y) ⋅dx = f (x, y) ⋅dx ⋅dy
f (y) ⋅dy

⇒ f (x | y) = f (x, y)
f (y)

f (x, y) = f (x | y) ⋅ f (y) = f (y | x) ⋅ f (x)

f (x | y) = f (x) f (y | x) = f (y)
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  (71) 

Partial Descriptors 
In the context of joint distributions, partial descriptors include the mean product: 

  (72) 

and the covariance:  

  (73) 

Expansion of the integrand in Eq. (73) reveals that the covariance is equal to the mean 
product minus the product of the means: 

  (74) 

This echoes the fact that the variance of a marginal distribution equals the mean square 
minus the square of the means. As discussed later in this document, the covariance 
between two random variables is a measure of linear dependence between them. A 
normalized, i.e., dimensionless measure of this linear dependence is the correlation 
coefficient, which is defined as: 

  (75) 

In the same way as relative frequency diagrams are instructive visualizations of the 
realizations of a single random variable, a scatter diagram is valuable when two random 
variables are observed simultaneously. The scatter diagram visualizes the outcomes of 
one variable along one axis versus the outcomes of the other variable along the other axis. 
The plot gives a sense of the dependence between the two variables. Statistical 
dependence between random variables may take different forms. For example, one form 
of dependence is that one variable varies exponentially with the other. Yet another 
example is linear dependence, in which the realizations of one random variable tend to be 
proportional to the outcomes of another random variable. Correlation, defined in Eq. (75), 
measures linear dependence. In other words, two random variables can be uncorrelated 
but statistically dependent. It is also emphasized that when statistical dependence is 
specified by means of correlation then the possibility of a non-positive definite 
correlation matrix is present. In reliability analysis, this prevents the transformation into 
standard normal random variables. As a result, some correlation structures are impractical 
and/or unphysical. Importantly, the range of possible correlation depends upon the 
marginal probability distributions of the random variables. Hence, in reliability analysis 
applications, the specification of correlation must be made with care and with knowledge 
about the marginal probability distributions.  

Matrix Notation 
When dealing with second-moment information, i.e., mean, variance, and correlation of 
multiple random variables it is convenient to use matrix notation. As an illustration, let X 

f (x, y) = f (y) ⋅ f (x)

E[XY ] = x ⋅ y ⋅ f (x, y)dxdy
−∞

∞

∫
−∞

∞

∫

Cov[X,Y ] = E[(X − µX )(Y − µY )] = (x − µX ) ⋅ (y − µY ) ⋅ f (x, y)dxdy
−∞

∞

∫
−∞

∞

∫

Cov[X,Y ]= E[XY ]− µXµY

ρXY =
Cov[X,Y ]
σ XσY

=
E[(X − µX )(Y − µY )]

σ XσY

= E X − µX

σ X

⋅
Y − µY

σY

⎡

⎣
⎢

⎤

⎦
⎥
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be a vector of random variables, while x is the vector of realizations of X. Then, the 
vector of means is 

  (76) 

where mi is the mean of random variable number i. The covariance matrix is a symmetric 
matrix that contains the variances of the random variables, and the covariance between 
them: 

  (77) 

By defining the matrix DXX to be a square matrix with the standard deviations on the 
diagonal the covariance matrix is written as the decomposition 

  (78) 

where RXX is the correlation matrix, which is also symmetric: 

  (79) 

The Joint Normal Distribution 
Unlike the situation for univariate distributions, only a few standard multivariate 
distribution types are encountered. By far the most common is the joint Normal 
distribution. The joint normal PDF is 

  (80) 

where n is the number of random variables. In the bi-variate case it reads 

  (81) 

where 

  (82) 

 

MX =

µ1
µ2

µn

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

ΣXX =

σ 1
2 ρ12 ⋅σ 1 ⋅σ 2 ρ13 ⋅σ 1 ⋅σ 3

ρ12 ⋅σ 1 ⋅σ 2 σ 2
2 ρ23 ⋅σ 2 ⋅σ 3

ρ13 ⋅σ 1 ⋅σ 3 ρ23 ⋅σ 2 ⋅σ 3 σ 3
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ΣXX = DXXRXXDXX

RXX =
1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

f (x) = 1
(2π )n ⋅ det(Σ XX )

⋅exp 1
2
x −MX( )T Σ XX

−1 x −MX( )⎛
⎝⎜

⎞
⎠⎟

f (x1, x2 ) =
1

2πσ1σ 2 1− ρ2
⋅ exp −

z
2(1− ρ)2

⎛
⎝⎜

⎞
⎠⎟

z =
x1 − µ1
σ1

⎛
⎝⎜

⎞
⎠⎟

2

+
x2 − µ2
σ 2

⎛
⎝⎜

⎞
⎠⎟

2

−
2ρ(x1 − µ1)(x2 − µ2 )

σ1σ 2
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A special case is the standard normal distribution, which is characterized by zero means, 
unit variances, and zero covariances. This PDF is denoted by the symbol j and takes the 
form 

  (83) 

This multivariate distribution has several properties that are important in reliability 
analysis:  
1. The multivariate standard normal PDF is rotationally symmetric and it decays 

exponentially in the radial and tangential directions 

2. The probability content outside a hyper-plane distanced b from the point y=0 is: 

  (84) 

which is employed in the document on FORM.  

3. The probability content outside a hyper- paraboloid with apex distanced b from the 
point y=0 is also available, as described in the document on SORM.  

Copulas 
Copulas represent an alternative technique for specifying statistical dependence between 
random variables. Currently, its use is more widespread in economics than engineering, 
but that may change. Copulas extend the options for prescribing statistical dependence 
beyond the use of the correlation coefficient, which only provides linear statistical 
dependence. The correlation coefficient is convenient and popular for a few reasons. 
First, it appears prominently in second-moment theory, together with means and standard 
deviations. Second, the correlation coefficient appears as a parameter in the powerful 
joint normal probability distribution, as described earlier in this document. However, the 
convenience of the correlation coefficient diminishes in the general of circumstances. 
Consider the example when the joint distribution is sought for a set of random variables 
with mixed marginal distributions and perhaps nonlinear dependence tendencies. This 
problem is important in reliability analysis where the Nataf or Rosenblatt transformations 
are usually applied. Under such circumstances the copulas represent an alternative, 
although it has yet to become popular in reliability analysis. The key feature of the copula 
technique is that a variety of dependence structures are possible. One example is stronger 
dependence in the distribution tails. An interesting class of copulas is the generalized 
elliptical distributions that are generalizations of the joint normal distribution. The joint 
normal distribution is also elliptical, but it is a special case of the “infinite” possibilities 
provided by copulas.  
From a philosophical viewpoint, the need to specify statistical dependence between 
random variables is, in some sense, a symptom of imperfect models. The source of 
correlation is due to hidden phenomena behind the random variables. If the underlying 
phenomena were modelled then the need to prescribe statistical dependence might vanish. 
Consider the example of prescribing correlation between the earthquake intensity at two 
nearby sites. The need to estimate this correlation disappears if the modelling is expanded 
to include the hypocentre location, the earthquake magnitude, and the attenuation of the 

ϕ(y) = 1
(2π )n

⋅ exp −
1
2
yTy⎛

⎝⎜
⎞
⎠⎟

p = Φ(−β )
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intensity to each site. It is those underlying phenomena that cause correlation in intensity 
between sites. This philosophical discussion is somewhat akin to the discussion on 
whether aleatory uncertainty exists. It does, unless all models are perfect, which they are 
not. However, this paragraph is intended to foster a strong focus on modelling and careful 
examination of the need to prescribe statistical dependence.  

Sklar’s Theorem 
Sklar’s theorem is the foundation for the use of copulas. It states that the joint CDF of 
some random variables, X, can be written in terms of a copula, C, which is a function of 
the marginal CDFs of the random variables: 

  (85) 

That is, the joint distribution is composed of the marginal distributions and the copula 
function. In other words, the copula is a function that couples the marginal distribution 
functions. This is the means by which dependence is introduced. It is also observed that 
copulas express dependence on a “quantile scale,” namely along the random variable 
axes. In this manner, the dependence at 10% probability of exceedance can be different 
from the dependence at 90% probability of exceedance. Several other interpretations of 
Eq. (85) are possible. First, it is observed that a copula is what remains of a joint 
cumulative distribution once the action of the marginal cumulative distribution functions 
has been removed. In other words, the marginals provide the probability distributions, 
while the sole purpose of the copula is to provide statistical dependence. Furthermore, 
Sklar’s theorem can be written 

  (86) 

where pi are probabilities. This form of Eq. (85) is used to “extract” copulas from existing 
joint distributions, as described shortly. It is noted that a copula is invariant with respect 
to strictly increasing transformations of the random variables, such as that of 
transforming random variables from normal to standard normal.  

Explicit and Implicit Copulas 
The simplest example of a copula is the one that yields no dependence at all. That is, the 
copula for independent random variables is: 

  (87) 

This expression, which corresponds to the definition of statistical independence between 
random variables, is an example of an explicit copula. Copulas are either implicit or 
explicit. Implicit copulas are extracted from known joint distributions. For example, the 
Gauss copula is extracted from the joint normal probability distribution. Specifically, 
from Sklar’s theorem in Eq. (85) it is understood that when the random variables have the 
joint CDF F then the copula C is the CDF of the marginal distributions. This is what is 
emphasized in Eq. (86). Consider two correlated normal random variables, here standard 
normal for simplicity: 

  (88) 

F(x1, x2 ,…, xn ) = C F1(x1),F2 (x2 ),…,Fn (xn )( )

C p1, p2 ,…, pn( ) = F F1
−1(p1),F2

−1(p2 ),…,Fn
−1(pn )( )

F(x1, x2 ,…, xn ) = F1(x1) ⋅F2 (x2 )Fn (xn )

F(x1, x2 ) = Φ(x1, x2 ) =
1

2π 1− ρ2
⋅ exp −

s1
2 + s2

2 − 2ρs1s2
2(1− ρ2 )

⎛
⎝⎜

⎞
⎠⎟
ds1 ds2

−∞

x1

∫
−∞

x2

∫
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The Gauss copula is extracted from this joint CDF by substituting the random variables in 
the original distribution with the marginal CDFs: 

  (89) 

Thus, the normal copula is extracted.  

Common Copulas 
The following is a set of common copulas, where the notation, p=F(x) is employed for 
convenience: 
Independent:  (90) 

Normal:  (91) 

Student:  (92) 

Frank:  (93) 

Clayton:  (94) 

Gumbel:  (95) 

Meta Distributions 
A potentially interesting aspect of the use of copulas is the possibility of creating entirely 
new “meta” distributions. This is achieved by first employing Eq. (86) to extract an 
implicit copula, followed by utilization of Eq. (85) to substitute “arbitrary” CDFs into the 
copula. Clearly, a great number of possible joint probability distributions—perhaps more 
or less useful—then become available. To generate realization of random variables from 
meta distributions the following sampling procedure may be helpful: 

1. Generate outcomes of some random variables x from the fundamental 
distribution, say the normal 

2. Obtain the marginal CDF value for each random variable, i.e., p=F(x) 
3. Transform according to some marginal distribution: x=F-1(p) 

Copula Densities 

  (96) 

C(p1, p2 ) = Φ(x1, x2 ) =
1

2π 1− ρ2
⋅ exp −

s1
2 + s2

2 − 2ρs1s2
2(1− ρ2 )

⎛
⎝⎜

⎞
⎠⎟
ds1 ds2

−∞

Φ−1 ( p1 )

∫
−∞

Φ−1 ( p2 )

∫

C(p1, p2 ) = p1 ⋅ p2

C(p1, p2 ) =
1

2π 1− ρ2
⋅ exp −

s1
2 + s2

2 − 2ρs1s2
2(1− ρ2 )

⎛
⎝⎜

⎞
⎠⎟
ds1 ds2

−∞

Φ−1 ( p1 )

∫
−∞

Φ−1 ( p2 )

∫

C(p1, p2 ) =
1

2π 1− ρ2
⋅ exp −

s1
2 + s2

2 − 2ρs1s2
2(1− ρ2 )

⎛
⎝⎜

⎞
⎠⎟

−
ν+2
2

⎛
⎝⎜

⎞
⎠⎟

ds1 ds2
−∞

Tν
−1 ( p1 )

∫
−∞

Tν
−1 ( p2 )

∫

C(p1, p2 ) = −
1
θ
⋅ ln 1+

e−θ ⋅p1 −1( ) ⋅ e−θ ⋅p2 −1( )
e−θ −1

⎛

⎝
⎜

⎞

⎠
⎟

C(p1, p2 ) = p1
−θ + p2

−θ −1( )−
1
θ

C(p1, p2 ) = exp − − ln(u1)( )θ + − ln(u2 )( )θ( )
1
θ

⎛

⎝
⎜

⎞

⎠
⎟

f (x1, x2 ,…, xn ) = c F1(x1),F2 (x2 ),…,Fn (xn )( ) ⋅ fi (xi )
i=1

n

∏
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where c is the derivative of C: 

  (97) 

Measures of Tail Dependence 
Because copulas facilitate the specification of different statistical dependence at different 
quantiles, it is of interest to introduce some generic measure of dependence, particularly 
in the tail of the distributions. This is particularly useful because, in certain applications, 
it is the extreme outcomes of dependent random variables that are of interest. The 
coefficient of upper tail dependence is defined as the probability that the random variable 
Xi exceeds the value associated with its inverse CDF of q, i.e., “the quantile of order q”, 
given that the other random variable Xj exceeds the value associated with its inverse CDF 
of q, when q tends towards unity. For continuous random variables, the coefficient is: 

  (98) 

Similarly,  

  (99) 

It is noted that for the normal copula, lupper=llower=0. Hence, it is not possible to take into 
account tail dependence with this copula, contrary to, say, the Student copula. When 
using copulas, there are also other measures of dependence other than the measures of tail 
dependence in Eqs. (98) and (99). These include the “rank-dependent correlation 
coefficient,” such as Kendall’s tau and Spearman’s rho. For Archimedean copulas, there 
is a strong connection between Kendall’s tau and the parameter of the copula function. 

Classical Inference 
Classical statistical inference for random variables attempts to determine point estimates 
for the distribution parameters. In other words, values are sought for the mean and 
standard deviation of the random variable, and perhaps other distribution parameters. In 
the classical approach, such point estimates are sometimes complemented by confidence 
intervals to gage the uncertainty in the point estimates. This document provides the most 
basic formulas, but starts with an exposure of diagrams that should always be plotted 
before computations are made. 

Diagrams 
Certain diagrams are helpful to visualize the characteristics of a probability distribution. 
Three plots are particularly popular:  

• Histogram: In these plots the abscissa axis shows the outcome space for the random 
variable. To generate a histogram, this axis is divided into “bins” and the number of 
observed realizations within each bin is plotted on the ordinate axis.  

• Frequency diagram: This diagram is a normalized version of the histogram. In 
particular, the area underneath the frequency diagram is unity, which means that it 

c(p1, p2 ,…, pn ) =
∂nC(p1, p2 ,…, pn )

∂p1∂p2∂pn

λupper = lim
q→1

P Xi > Fi
−1(q)   Xj > Fj

−1(q)( ) = lim
q→1

1− 2q + C(q,q)
1− q

λlower = lim
q→1

P Xi < Fi
−1(q)   Xj < Fj

−1(q)( ) = lim
q→1

C(q,q)
q
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can be visually compared with standard PDFs. The frequency diagram is normalized 
by dividing the ordinate values of the histogram by the total area of the histogram. 
The total area of the histogram equals the total number of observations multiplied by 
the bin size.  

• Cumulative frequency diagram: While the frequency diagram is comparable to a 
PDF, the cumulative frequency diagram is comparable with the CDF. This plots also 
has the random variable along the abscissa axis. Ordinate values are computed at 
every observed realization of the random variable. Each ordinate value equals the 
number of realizations at and below that abscissa value, divided by the total number 
of observations.  

Second-moment Statistics 
Given n observations xi of the random variable X the sample mean is: 

  (100) 

The sample variance, i.e., the sample standard deviation squared, is: 

  (101) 

In situations with many observations Eq. (101) is somewhat cumbersome because the 
mean of the random variable must be pre-computed before looping through the data again 
to compute s2. This is remedied by the following manipulations: 

  (102) 

This expression is more computationally convenient because the data can be looped over 
only once, to compute the sum of xi and the sum of xi2. In passing, it is noted that the 
reason for the denominator (n-1) instead of simply n is as follows: Consider the sample 
and the sample variance to be random variables in their own right. Then, the expectation 
of the sample mean is  

  (103) 

where the second-last term recognizes that E[xi] is the mean of the random variable. This 
provides comfort that the expectation of the sample mean equals the mean of the 
underlying random variable. Next, consider the expectation of the sample variance: 
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∑
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∑
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  (104) 

To proceed, it is made use of the fact that “the variance is equal to the mean square minus 
the square of the means,” so that: 

  (105) 

and 

  (106) 

where the mean of the sample mean is provided in Eq. (103) and the variance of the 
sample mean is: 

  (107) 

Substitution of Eqs. (103) and (107) into Eq. (106) and substitution of Eqs. (105) and 
(106) into Eq. (104) yields 

  (108) 

which shows that the denominator (n-1) is necessary to have the expectation of the 
sample variance match to the underlying random variable.  

Correlation 
The formulas for sample mean and sample variance of individual random variables are 
valid for the inference on joint random variables. In addition, the sample correlation 
coefficient is: 
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  (109) 

Inference by Geometrical Considerations 
Usually, observed realizations of a random variable form the basis for making inferences 
about its underlying distribution. However, in some situations it is possible to determine 
the exact probability distribution of a random variable by geometrical considerations. In 
particular, this is sometimes possible when the random variable represents a distance. For 
this purpose, consider an uncertain distance X, which is a random variable with CDF 
F(x). By definition, the CDF represents the probability that the distance is less than x. 
This can sometimes be computed as  

  (110) 

where L, A, and V represent length, area, and volume; Ltotal is the total length of the 
outcome space and LX≤x is the length of the outcome space where X is less than x, and so 
forth. For problems that are amenable to this approach, some deal with lengths, others 
with area, and yet others with volume  

Bayesian Inference 
Contrary to classical statistics, where point estimates are provided for distribution 
parameters, the Bayesian approach provides probability distributions. For example, for a 
Normal random variable, the Bayesian analysis provides the probability distribution for 
the mean and standard deviation. All other inference statements are made from these 
distributions. The availability of these distributions is also advantageous because they can 
be included in subsequent reliability analysis. In the following, let X denote a random 
variable and let q denotes a generic parameter in the probability distribution for X. The 
key objective is to determine the probability distribution of q given observations of X, 
collected in the vector x. The following formula synthesizes the essence of the Bayesian 
approach (Box and Tiao 1992; Carlin and Louis 2009): 

  (111) 

ρ =
1

n −1
⋅

xiyi
i=1

n

∑ − n ⋅ x ⋅ y

sx ⋅ sy

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

F(x) = P(X ≤ x) =

LX≤x
Ltotal

⎛
⎝⎜

⎞
⎠⎟

AX≤x

Atotal

⎛
⎝⎜

⎞
⎠⎟

VX≤x
Vtotal

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

f ''(θ ) = L(θ )
c

⋅ f '(θ )



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Random Variables Updated August 30, 2023 Page 27 

where f’’(q) is the posterior PDF, c is a constant explained shortly, L(q) is the likelihood 
function, and f’(q) is the prior PDF. The constant, c, serves the purpose of normalizing 
the posterior, which implies the following definition: 

  (112) 

To understand the workings of Eq. (111) it is helpful to first relate it to Bayes’ Rule for 
events, which reads: 

  (113) 

where E1 is the event for which the probability is sought and E2 is the event that has 
occurred. It is noted that the probability of the occurred event, conditioned upon E1, 
serves the role as likelihood, and that the unconditional probability of the observed event 
serves as normalizing factor in the denominator. This pattern also emerges when Eq. 
(111) is written in the following more complete form: 

  (114) 

where 

  (115) 

which is sometimes called the marginal density of the data. This formulation clarifies that 
the posterior distribution for q is directly linked to the observed data via the likelihood 
function. The formulation of the likelihood function, as well as the prior distribution, is a 
central topic in this document. 

Discrete Problems 
This document primarily addresses the case where q and X are continuous random 
variables. However, in passing, a few other cases are noted. First, if one or both of the 
variables are discrete, then the PDFs are simply replaced by PMFs. In fact, if the 
observed random variable is discrete then the normalization constant takes on a direct 
meaning, as shown here for the case where both variables are discrete: 

  (116) 

Bayes’ theorem for updating the probability distribution of a continuous random variable, 
q, given the occurrence of an event, E, is: 

 
 (117) 

Similarly, Bayes’ theorem for updating the probability distribution of a discrete random 
variable, q, given the occurrence of an event, E, is: 
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  (118) 

Bayes’ rule to update the probability of an event, E, given the outcome of a random 
variable, q, is: 

  (119) 

Prior Distribution 
Eq. (111) shows that the prior distribution is one of two key ingredients in the Bayesian 
approach, with the likelihood function being the other one. The prior distribution is 
sometimes a point of contention, because it allows subjective information to enter the 
calculations. On one hand, this is an advantage because it gives more flexibility to the 
analyst; on the other hand it may seem problematic because the prior assumptions may 
seem arbitrary. To expose the matter, the following subsections list the options that are 
available as prior distributions.  
Previous Posterior 
When a probability distribution for q is already available, for example from earlier 
applications of Eq. (111), then it is natural to employ it as prior. In circumstances where 
this choice leads to an unusually complicated expression for the posterior, then the use of 
a conjugate prior may be explored, as explained shortly. 
Uniform and Non-informative Priors 
When little or now prior information is available about q it is desirable to select a prior 
that is uniform over the “range of interest.” This is either the exact uniform distribution, 
or a distribution that is approximately uniform over the important range of q-values. This 
is intended to express complete a priori uncertainty about q. 

Conjugate Prior 
A prior is called conjugate if the distribution type of the posterior is the same as that of 
the prior. The selection of a conjugate prior is convenient, because it often leads to simple 
updating rules for the parameters of the distribution for q. 

Likelihood Function 
The likelihood function is the crucial means by which the observed data affects the 
posterior. Eq. (111) illustrates that the likelihood function is a function of q, and Eq. 
(114) clarifies that it takes as input the vector of observed realizations, x. To further 
understand the meaning of the likelihood function, a strict comparison between Eq. (111) 
and Bayes’ Rule in Eq. (113) could lead to the impression that L(q) is the “probability of 
x given q.” However, this is misleading, both because the probability of any realization x 
is zero, and because L(q) does not have to be interpreted as a probability. Instead, 
because of the normalizing constant, c, in Eq. (111), it is only necessary that the 
likelihood function is proportional to the probability of observing x. In short, the 
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likelihood function requires a probabilistic distribution for X, which is a function of q, but 
it is unnecessary to enter a proper probability into Eq. (111). As a generic example, 
suppose X has the PDF f(x), in which q enters, and one realization, x, has been observed. 
Then the likelihood function, L(q), equals the value of f(x), evaluated at the observed 
realization, x, with q as a free variable. Importantly, f(x) can be scaled by whichever 
expression that is constant with respect to q. Similarly, if it has been observed that X<x, 
then the likelihood function is proportional the CDF, F(x), with q as a free variable. 

Posterior Statistics 
Once the posterior distribution is determined in accordance with Eq. (111) it is often of 
interest to determine, at least, the second-moment statistics of the model parameter(s). 
From the definition of expectation, the mean is: 

  (120) 

and the variance is 

  (121) 

For problems with more than one model parameter, the mean vector is: 

  (122) 

and the covariance matrix is: 

  (123) 

Predictive Distribution 
While the posterior in Eq. (111) provides the probability distribution for the model 
parameter(s), the so-called predictive distribution addresses the original random variable, 
X. Specifically, the predictive distribution is a distribution for X that incorporates the 
uncertainty in the model parameter(s), q, by using the expectation integral in the 
following way:  

  (124) 

Computational Methods 
The Bayesian approach is philosophically appealing, but it has been hindered by 
computational challenges for all but simple problems, e.g., problems with conjugate 
priors. This has changed with the advent of high computer power and new sampling 
algorithms. It is the evaluation of two integrals that are of particular importance in 
Bayesian analysis:  

1. The integral to obtain the normalizing constant, c, in Eq. (112). 
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2. The integrals to obtain second-moment statistics in Eqs. (120) through (123), or 
higher moments and quantiles. 

Recently, numerical integration algorithms, implemented on powerful computers, have 
emerged to solve these problems (Carlin and Louis 2009). While Gaussian quadrature 
used to be popular, this approach suffers from the curse of dimensionality when the 
number of model parameters is large. Instead, various Monte Carlo methods have become 
prevalent. In particular, use of Markov Chain Monte Carlo (MCMC) methods, such as the 
Metropolis-Hastings algorithm and the Gibbs sampler, have become widespread. Such 
algorithms do not require a known analytical expression for the sampling distribution, 
which is advantageous in light of the fact that few posterior distributions come in closed 
form. Also, while classical Monte Carlo sampling creates independent realizations, the 
realizations from MCMC methods are dependent. Nominally, this means that more 
samples are required to reach the same precision as with Monte Carlo sampling, but the 
“effectiveness” of each sample is greater with MCMC. Several computer programs are 
now available to carry out advanced Bayesian inference: 

• R (www.r-project.org) is the free version of the commercial package S-plus 
• WinBUGS (www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml) has syntax similar to 

R 
• RBugs allows WinBUGS to be called from within R 
• OpenBUGS (http://mathstat.helsinki.fi/openbugs) is the successor to WinBUGS  
• BayesX (www.stat.uni-muenchen.de/˜bayesx) has similarities with WinBUGS, 

with a more limited modelling range 

List of Conjugate Priors 
The table below gives an overview of conjugate priors, and the convenient updating rules 
that follow. The notation matches the one used in the documents that give the detailed 
expressions for the distributions. For problems where notation may conflict, an underline 
is employed to distinguish the parameter of the distribution of X and the parameter of the 
prior distribution. 

Table 1: Updating rules for conjugate priors. 

Random variable Observation Prior  Rule 

X~Binomial(p,n) x occurrences in n 
trials 

p~Beta(a,b) a”=a’+x 
b”=b’+n–x 

X~Geometric(p) x trials until first 
occurrence 

p~Beta(a,b) a”=a’+1 
b”=b’+x–1 

X~NegativeBinomial(p,k) x trials to kth 
occurrence 

p~Beta(a,b) a”=a’+k 
b”=b’+x–k 

X~Poisson(l,T) x occurrences in T l~Gamma(n,k) k”=k’+x 
n”=n’+T 

X~Exp(l) n observations of x  l~Gamma(n,k) k”=k’+n 
n”=n’+Σxi 
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X~Exp(l) n obs. of x and m obs. 
of X>y 

l~Gamma(n,k) k”=k’+n (?) 
n”=n’+Σxi+Σyi 

X~Gamma(n,k) n observations of x  n~Gamma(n,k) k”=k’+nk 
n”=n’+Σxi 

X~Rayleigh(l) n observations of x  l~Gamma(n,k) k”=k’+n 
n”=n’+Σxi2 

 

X~Normal(µ,s) n 
observations 
of x  

µ~Normal(µ,s) 

 

X~Lognormal(z,s) n 
observations 
of x with 
average  

z~Normal(µ,s) 
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