
Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Computational Stiffness Method Updated August 24, 2023 Page 1

Computational Stiffness Method
When the stiffness method is employed in hand calculations, the stiffness matrix is
established column-by-column by setting the degrees of freedom of the structure equal to
one, one at a time. However, the stiffness method is even more powerful when
implemented on the computer. In that case, the structure is essentially seen as an
assembly of individual elements. As a result, the stiffness matrix and load vector are
established by assembling, i.e., summing the contributions from those elements. That is
the topic of this document. The finite element method is a natural name for this approach,
but that name is reserved for an extension of the computational stiffness method, covered
in another document on this website.

Element Configurations
Figure 1 shows schematically, from left to right, how an individual element contributes to
the final structure. To understand the assembly of the final stiffness matrix and load
vector it is helpful to label each “configuration,” from Basic to Final:

• Basic: In this configuration the element has the minimum number of degrees of
freedom (DOFs) to describe any element deformation but no rigid-body motion;
the forces in this configuration are also independent.

• Local: This configuration has enough DOFs to fully describe deformation and
rigid-body motion, but the DOFs are in the local coordinate system.

• Global: This element configuration is the same as the Local, but the DOFs are
now aligned with the global coordinate system; i.e., the orientation of the element
in the structure is accounted for.

• All: This is a structural configuration, in which absolutely all DOFs of the
structure are included, even those fixed by boundary conditions.

• Final: In this structural configuration the boundary conditions, as well as other
restraints and dependencies are introduced.

Figure 1: Element configurations.

BASIC LOCAL
GLOBAL

ALL FINAL

2
1

3
4
6

5
31

2

3
1

2

4 6
5

1

2

3

4

5

6

7

8
9 10

11

12

1

2

3

4
5
6

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Computational Stiffness Method Updated August 24, 2023 Page 2

Transformation Matrices
The configurations in Figure 1 are linked by transformation matrices. In other words, a
transformation matrix defines the relationship between the DOFs in two configurations.
Denoting by u the vector of DOFs the “kinematic compatibility” relationships are written

 (1)

 (2)

 (3)

 (4)

The subscripts are selected by the first letter of the name of the configuration it refers to.
In this way, Tbl refers to the transformation matrix between the Basic and Local
configurations, and so forth. Notice that the “basic-most” configuration appears on the
left-hand side in Eqs. (1) to (4). The principle of virtual work is now invoked to
determine the associated force relationships. When an element or the structure deforms
then the virtual work in any of the configurations must be equal. Consider the local and
global configurations as an example. By the principle of virtual displacements, equality
of virtual work in the two configurations requires:

 (5)

Introducing the transformation matrix between the two configurations yields:

 (6)

Because dug is an arbitrary virtual displacement pattern, the parenthesis in Eq. (6) must
be zero for Eq. (6) to hold true. Consequently, because the parenthesis in Eq. (6) is a row
vector:

 (7)

It is thus observed that the forces transform according to the transposed version of the
earlier transformation matrices, with the “final-most” configuration on the left-hand side.
Next, the relationship between the forces and displacements in each configuration is
investigated. Initially, this relationship may seem obvious: in the stiffness method the
forces are related to the displacement by the stiffness matrix. However, the question is
how the stiffness matrix in each configuration is established. First, assume that the
stiffness matrix in the local configuration is known. This represents the material law at
the local level. Combined with the equilibrium relationship as derived in Eq. (7) and
kinematic compatibility from Eq. (4) the stiffness matrix in the local configuration is:

(8)

ub = Tblul
ul = Tlgug

ug = Tgaua

ua = Tafu f

Fg
Tδug − Fl

Tδul = 0

Fg
Tδug − Fl

TTlgδug = Fg
T − Fl

TTlg()δug = 0

Fg
T − Fl

TTlg = 0 ⇒ Fg −Tlg
TFl = 0 ⇒ Fg = Tlg

TFl

Fg= TlgFlT

= TlgKlulT

= TlgKlTlgugT

Kg

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Computational Stiffness Method Updated August 24, 2023 Page 3

That is, the stiffness matrix in an “above” configuration is obtained by pre- and post-
multiplying the stiffness matrix in the “below” configuration by the transformation
matrix between the two configurations; e.g.:

 𝐊! = 𝐓"!#𝐊"𝐓"! (9)

The form of the relationships derived in this section are summarized in Figure 2, using
the Local and Global configurations as an example. Equilibrium is on the left-hand side
and kinematic compatibility is on the right-hand side. This type of visualization of the
three ingredients of any “structural boundary value problem” (equilibrium, compatibility,
material law) is found in many of the documents posted on this website.

Figure 2: The ingredients of the boundary value problem in the Global configuration.

Figure 3 provides a similar overview for all the configurations, from Basic to Final. In the
following sections the transformation matrices are established for the 2D frame element.
It turns out that the transformation matrices are set up in a manner similar to the creation
of the stiffness matrix in the classical stiffness method; DOFs at set equal to unity, one at
a time. For some of the transformations it is possible to establish computer algorithms
that are far more efficient than using transformation matrices for establishing the stiffness
matrix and load vector. This is particularly the case with the transformation from Global
to All, and the introduction of boundary conditions when going from the All to the Final
configuration. While the use of transformation matrices is a pedagogical way to establish
a consistent methodology, the more efficient algorithms are also mentioned.

ulFl Fl=Klul

ul=TlgugFg=TlgFl

ugFg

Equilibrium Compatibility

T

Global

Local

Fg=(TlgKlTlg)ug

T

Kg

T

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Computational Stiffness Method Updated August 24, 2023 Page 4

Figure 3: Overview of configurations and matrix relationships.

Basic to Local
The objective in this section is to establish the transformation matrix Tbl in Eq. (1). This
is accomplished by setting the local DOFs equal to one, one at a time. By observing the
resulting deformations in the basic configuration this establishes the corresponding
column of Tbl. As an example, consider the 2D frame element in Figure 3. Setting the
first local DOF equal to unity, and all others equal to zero, implies a unit shortening of
the element. Thus, the value of the first DOF in the basic configuration is -1, while the
bending DOFs are zero. This forms the first column of Tbl, which in its entirety reads

 (10)

ubFb Kb BASIC

ub=TblulFl=TblFb

ulFl Kl=TblKbTbl

ul=TlgugFg=TlgFl

ugFg Kg=TlgKlTlg

ug=TgauaFa= S(TgaFg)

uaFa

ua=TafufFf=TafFa

ufFf Kf=TafKaTaf

LOCAL

GLOBAL

ALL

FINAL

T

T

T

T

T

T

T

2
1

3

4
6

5
31

2

3
1

2

4 6
5

1

2
3

4

5

6

7

8
9 10

11

12

1

2

3

4
5
6

Ka=S(TgaKgTga)T

Tbl =
−1 0 0 1 0 0
0 −1 / L 1 0 1 / L 0
0 −1 / L 0 0 1 / L 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Computational Stiffness Method Updated August 24, 2023 Page 5

The second and fifth column of this matrix are confusing at first; it helps to draw the
deformed shape of the element in the local configuration and identify the end rotations
compared with the straight line from one element end to the other.

Local to Global
The transformation into the global coordinate system is a function of the element
orientation. For 2D elements, the orientation is represented by the angle q between the
local element axis and the horizontal axis. The columns of the transformation matrix are
established by setting the global DOFs equal to unity, one at a time. For the 2D frame
element in Figure 3 the result is

 (11)

Tlg can be regarded as a matrix of “direction cosines,” which is a concept from the more
general field of coordinate transformations, described in the notes on vectors and
geometry. The direction cosines are

 (12)

where Dx is the x-direction distance between the element length. Similar with Dy and Dz.
Hence, Tlg can also be written

 (13)

In computer implementations of the stiffness matrix it is common to see Tbl and Tlg
combined; combining Eqs. (10) and (13) yields

Tlg =

cos(θ) sin(θ) 0 0 0 0
− sin(θ) cos(θ) 0 0 0 0
0 0 1 0 0 0
0 0 0 cos(θ) sin(θ) 0
0 0 0 − sin(θ) cos(θ) 0
0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

cx =
Δx
L

, cy =
Δy
L

, cz =
Δz
L

Tlg =

cx cy 0 0 0 0

−cy cx 0 0 0 0

0 0 1 0 0 0
0 0 0 cx cy 0

0 0 0 −cy cx 0

0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Computational Stiffness Method Updated August 24, 2023 Page 6

 (14)

It can also be noted that the rotation matrix, R, that appears in the theory of coordinate
transformations is not exactly the transformation Tlg. Rather, the transformation matrix is
the transpose of the rotation matrix, which in this case is the same as its inverse. As a
result, for a 3D frame element with six DOFs at each end the transformation matrix from
the local to the global coordinate system is a 12-by-12 matrix that reads

 (15)

where 0 is a three-by-three sub-matrix of zeros and R is the rotation matrix established in
the notes on vectors and geometry.

Global to All
The objective of this transformation is to link the element DOFs with the structural
DOFs. The size of the transformation matrix Tga is number of element DOFs by number
of structural DOFs. Tga is established in the same manner as all other transformation
matrices: one DOF at a time in the All configuration is set equal to unity. For the
structure in Figure 3, set DOF number four equal to one. This DOF corresponds to DOF
number one for the element below. Hence, in this case the fourth column of the matrix
Tga has value one in the first row:

 (16)

The presence of only zeros and ones is a general characteristic of the Tga matrix, as it is
for the next transformation.

All to Final
Fixed boundary conditions are introduced by means of the Taf transformation matrix. The
dimension of this matrix is the number of DOFs in the All configuration by the number of

Tbg = TblTlg =

−cx −cy 0 cx cy 0

cy
L

− cx
L

1 −
cy
L

cx
L

0

cy
L

− cx
L

0 −
cy
L

cx
L

1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Tlg =

RT 0 0 0
0 RT 0 0
0 0 RT 0
0 0 0 RT

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Tga =

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Computational Stiffness Method Updated August 24, 2023 Page 7

DOFs in the final configuration. The procedure to establish Taf is not new: each DOF in
the final configuration is set equal to unity, one at a time. For the structure in Figure 3,
setting the first DOF in the final configuration equal to one with the others zero implies
that the fourth DOF in the All configuration is equal to one and the other zero. Thus, the
first row in Taf has a one in the fourth position:

 (17)

For the stiffness matrix Ka the effect of pre- and post-multiplying by Taf is that the rows
and columns corresponding to fixed DOFs removed.

Stiffness Matrix Assembly
Now, let’s apply all those transformation matrices. The stiffness method requires the
assembly of the stiffness matrix, Kf, and the load vector, Ff, for the structure. Once the
system of equilibrium equations, Kf uf =Ff, are solved for uf, the element deformations,
ub, and element forces, Fb, i.e., bending moments, etc. are determined. To assemble the
stiffness matrix, the first step is to determine Kb, i.e., the stiffness matrix in the Basic
configuration. For truss and frame elements, that is trivial. For example, for the frame
element in Figure 3 the basic stiffness matrix is

 (18)

The final stiffness matrix for the structure, Kf, is assembled by pre- and post-multiplying
the previous stiffness matrix by transformation matrices:

 (19)

Taf =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

kb =

EA
L

0 0

0 4EI
L

2EI
L

0 2EI
L

4EI
L

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

K f = Taf
T Tga,i

T Tlg,i
T Tbl ,i

T kb,iTbl ,iTlg,iTga,i
i=1

numEl

∑⎛⎝⎜
⎞
⎠⎟
Taf

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Computational Stiffness Method Updated August 24, 2023 Page 8

However, the application of Tga and Taf is computationally inefficient. A far more
computationally efficient method to insert Kg from each element into Kf is to employ an
“ID array.” This is described by Filippou and Fenves in their chapter entitled Methods of
Analysis for Earthquake-Resistant Structures in the book on earthquake engineering
edited by Bozorgnia and Bertero in 2004. An ID array implementation is also given in the
G2 Python code posted on this website. For the structure in Figure 3, with node and
element numbering shown in Figure 4, the ID array for the three elements, using Option 1
for the DOF numbering, is

 𝐈𝐃 = &
𝑒𝑙𝑒𝑚𝑒𝑛𝑡$
𝑒𝑙𝑒𝑚𝑒𝑛𝑡%
𝑒𝑙𝑒𝑚𝑒𝑛𝑡&

, = &
𝑛𝑜𝑑𝑒$, 𝑛𝑜𝑑𝑒%
𝑛𝑜𝑑𝑒%, 𝑛𝑜𝑑𝑒&
𝑛𝑜𝑑𝑒&, 𝑛𝑜𝑑𝑒'

, = &
𝑖𝑑$
𝑖𝑑%
𝑖𝑑&

, = &
1 2 3 4 5 6
4 5 6 7 8 9
7 8 9 10 11 12

, (20)

That means a suitable pseudo code to insert the contribution from Element i into Ka is
 Ka(idi, idi) += Kg (21)

Figure 4: Numbering for ID array.

However, because the goal is to establish Kf it is more convenient to sort the free DOFs
from the fixed DOFs. That means adopting Option 2 in Figure 4. In the G2 code that is
done by establishing a DOF vector for the four nodes:

 𝐃𝐎𝐅 = =

𝑛𝑜𝑑𝑒$
𝑛𝑜𝑑𝑒%
𝑛𝑜𝑑𝑒&
𝑛𝑜𝑑𝑒'

> = =

12 11 10
1 2 3
4 5 6
9 8 7

> (22)

where it is observed that the six free DOFs are numbered as the first six DOFs. In that
case, the ID array is

 𝐈𝐃 = &
12 11 10 1 2 3
1 2 3 4 5 6
4 5 6 9 8 7

, (23)

DOF numbering
(Option 1)

Node numbering
Element numbering

1

2

3 4

1

2
3

1

2
3

4

5

6

7

8
9 10

11

12

DOF numbering
(Option 2)

12

11
10

1

2

3

4

5
6 9

8

7

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Computational Stiffness Method Updated August 24, 2023 Page 9

Assembling Load Vector & Recovering Element Forces
In the equilibrium equations Ku=F it may seem at first glance that F is the simplest
quantity. However, in computational analysis, several F-vectors must be considered:

• Load vector at the structural level, containing nodal point loads applied along
DOFs. This vector does not exist at the element level.

• Load vector at the structural level, containing element loads, e.g., distributed
loads.

• Total load vector at the structural level, containing both previous cases
• Clamping force vector at the element level containing element loads, e.g.,

distributed loads.
• Force vector at the element level containing member-end forces.

At the structural level, the notation from the introductory document on the stiffness
method is adopted. That means that Ff is the load vector that contains both nodal loads
and element loads:

𝐊(𝐮(= 𝐅@(− 𝐅B(CDEDF

#)*+,
,)+-
./0*)1

= 𝐅(
(24)

where 𝐅@(are nodal loads and 𝐅B(are clamping forces from element loads. The former does
not really need an assembly procedure, because the point loads at the nodes are simply
entered in the proper position of the load vector. In contrast, the element load vector, 𝐅B(,
is assembled in a manner similar to the stiffness matrix:

 𝐅B(= 𝐓2(# G H 𝐓!2,4# 𝐓"!,4# 𝐓5",4# 𝐅B5,4

6789"

4:$

I (25)

where the element clamping forces are

 𝐅B5 =

⎩
⎪
⎨

⎪
⎧

0

−
𝑞𝐿%

12
𝑞𝐿%

12 ⎭
⎪
⎬

⎪
⎫

 (26)

for the element addressed in this document, when q is uniformly distributed load.
Attention now turns to the recovery of element forces after the structural equilibrium
equations, Kf uf =Ff, are solved for uf. First, the element deformations are obtained:

 (27)

Note that matrix multiplication is straightforward but computationally costly; therefore, it
is reiterated that more efficient algorithms are used in practice instead of Tga and Taf.
Once ub is determined, the element forces are:

 𝐅5 = 𝐊5𝐮5 + 𝐅B5 (28)

where it is carefully noted that Fb at the element level has a different interpretation than
Ff at the structural level. Specifically, Fb contains the forces along the degrees of freedom

ub = TblTlgTgaTafu f

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Computational Stiffness Method Updated August 24, 2023 Page 10

of the element, caused by element deformations and element loads. That contrasts with Ff
at the structural level, which contains all the applied loads on the structure. One way of
thinking about this is is: First Kf uf =Ff gives the deformations uf. Next Fb=Kb ub gives the
element forces, Fb.

